Abstract
Previously, we showed that an integral component of stored mRNP particles in Xenopus oocytes, Xp54, is a DEAD-box RNA helicase with ATP-dependent RNA-unwinding activity. Xp54 belongs to small family of helicases (DDX6) that associate with mRNA molecules encoding proteins required for progress through meiosis. Here we describe the nucleocytoplasmic translocation of recombinant Xp54 in microinjected oocytes and in transfected culture cells. We demonstrate that Xp54 is present in oocyte nuclei, its occurrence in both soluble and particle-bound forms and its ability to shuttle between nucleus and cytoplasm. Translocation of Xp54 from the nucleus to the cytoplasm appears to be dependent on the presence of a leucine-rich nuclear export signal (NES) and is blocked by leptomycin B, a specific inhibitor of the CRM1 receptor pathway. However, the C-terminal region of Xp54 can act to retain the protein in the cytoplasm of full-grown oocytes and culture cells. Cytoplasmic retention of Xp54 is overcome by activation of transcription. That Xp54 interacts directly with nascent transcripts is shown by immunostaining of the RNP matrix of lampbrush chromosome loops and co-immunoprecipitation with de novo-synthesized RNA. However, we are unable to show that nuclear export of this RNA is affected by either treatment with leptomycin B or mutation of the NES. We propose that newly synthesized Xp54 is regulated in its nucleocytoplasmic distribution: in transcriptionally quiescent oocytes it is largely restricted to the cytoplasm and, if imported into the nucleus, it is rapidly exported again by the CRM1 pathway. In transcriptionally active oocytes, it binds to a major set of nascent transcripts, accompanies mRNA sequences to the cytoplasm by an alternative export pathway and remains associated with masked mRNA until the time of translation activation at meiotic maturation and early embryonic cell division.
Original language | English |
---|---|
Pages (from-to) | 395-407 |
Number of pages | 13 |
Journal | Journal of Cell Science |
Volume | 115 |
Issue number | 2 |
Publication status | Published - 15 Jan 2002 |
Keywords
- Xenopus
- oogenesis
- maternal mRNA
- ribonucleoproteins
- nuclear export
- translation repression
- CYTOPLASMIC MESSENGER-RNA
- OOCYTE-SPECIFIC PROTEINS
- Y-BOX PROTEINS
- XENOPUS-OOCYTES
- BINDING-PROTEINS
- SACCHAROMYCES-CEREVISIAE
- EXPORT PATHWAY
- GERM-CELLS
- TRANSCRIPTION
- FAMILY