Abstract
We study the combinatorial and rigidity properties of disc packings with generic radii. We show that a packing of n discs in the plane with generic radii cannot have more than 2n − 3 pairs of discs in contact. The allowed motions of a packing preserve the disjointness of the disc interiors and tangency between pairs already in contact (modelling a collection of sticky discs). We show that if a packing has generic radii, then the allowed motions are all rigid body motions if and only if the packing has exactly 2n − 3 contacts. Our approach is to study the space of packings with a fixed contact graph. The main technical step is to show that this space is a smooth manifold, which is done via a connection to the Cauchy–Alexandrov stress lemma. Our methods also apply to jamming problems, in which contacts are allowed to break during a motion. We give a simple proof of a finite variant of a recent result of Connelly et al. (Connelly et al. 2018 (http://arxiv.org/abs/1702.08442)) on the number of contacts in a jammed packing of discs with generic radii.
Original language | English |
---|---|
Article number | 20180773 |
Number of pages | 16 |
Journal | Proceedings of the Royal Society A - Mathematical, Physical & Engineering Sciences |
Volume | 475 |
Issue number | 2222 |
Early online date | 27 Feb 2019 |
DOIs | |
Publication status | Published - 28 Feb 2019 |
Keywords
- Rigidity
- Circle packings
- Jamming