Reticular nanoscience: bottom-up assembly nanotechnology

Jacopo Andreo, Romy Ettlinger, Orysia Zaremba, Quim Peña, Ulrich Lächelt, Roberto Fernández de Luis, Ralph Freund, Stefano Canossa, Evelyn Ploetz, Wei Zhu, Christian S. Diercks, Harald Gröger, Stefan Wuttke*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)

Abstract

The chemistry of metal–organic and covalent organic frameworks (MOFs and COFs) is perhaps the most diverse and inclusive among the chemical sciences, and yet it can be radically expanded by blending it with nanotechnology. The result is reticular nanoscience, an area of reticular chemistry that has an immense potential in virtually any technological field. In this perspective, we explore the extension of such an interdisciplinary reach by surveying the explored and unexplored possibilities that framework nanoparticles can offer. We localize these unique nanosized reticular materials at the juncture between the molecular and the macroscopic worlds, and describe the resulting synthetic and analytical chemistry, which is fundamentally different from conventional frameworks. Such differences are mirrored in the properties that reticular nanoparticles exhibit, which we described while referring to the present state-of-the-art and future promising applications in medicine, catalysis, energy-related applications, and sensors. Finally, the bottom-up approach of reticular nanoscience, inspired by nature, is brought to its full extension by introducing the concept of augmented reticular chemistry. Its approach departs from a single-particle scale to reach higher mesoscopic and even macroscopic dimensions, where framework nanoparticles become building units themselves and the resulting supermaterials approach new levels of sophistication of structures and properties.
Original languageEnglish
Pages (from-to)7531-7550
Number of pages20
JournalJournal of the American Chemical Society
Volume144
Issue number17
Early online date7 Apr 2022
DOIs
Publication statusPublished - 4 May 2022

Fingerprint

Dive into the research topics of 'Reticular nanoscience: bottom-up assembly nanotechnology'. Together they form a unique fingerprint.

Cite this