Retention and silencing of prepro-GnRH-II and type II GnRH receptor genes in mammals.

Alan James Stewart, AA Katz, RP Millar, K Morgan

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)


The decapeptide hormone GnRH-I and the type I GnRH receptor drive the reproductive hormonal cascade in mammals by stimulating synthesis and secretion of LH and FSH. Mammals possess a second GnRH system composed of a related hormone, GnRH-II, (differing from GnRH-I by three amino acid residues) and the type II GnRH receptor. In many mammalian species one or both of the GnRH-II system genes are disrupted or deleted, rendering their products non-functional. This includes humans who possess a gene encoding GnRH-II but lack a functional type II GnRH receptor. Here we examined the genes encoding prepro-GnRH-II (GnRH2) and the type II GnRH receptor (GnRHR2) in more than 20 mammalian species, encompassing 10 orders, to determine whether they encode functional proteins. The structural organisation of both genes in most mammalian genome sequence assemblies was poorly annotated or incompletely described. Our findings show significant variation in the DNA sequence conservation and functional status of each gene, even between closely related species. Prepro-GnRH-II was functionally compromised in 12 / 22 species and the type II GnRH receptor gene was disrupted in 14 / 22 species. Retention of large sections of each gene in most mammalian genomes suggests that mammalian ancestors had a functional GnRH-II system. Gene disruptions were due to a spectrum of mutations which must have occurred independently after the evolutionary divergence of mammals from ancestral animals. The genetic information will be useful for understanding the physiological role of the GnRH-II system and establishing animal models for functional studies.
Original languageEnglish
Pages (from-to)416-432
Number of pages17
Issue number4
Publication statusPublished - Nov 2009


Dive into the research topics of 'Retention and silencing of prepro-GnRH-II and type II GnRH receptor genes in mammals.'. Together they form a unique fingerprint.

Cite this