Abstract
We have used high-throughput Illumina sequencing to identify novel recombinants between Deformed wing virus (DWV) and Varroa destructor virus-1 (VDV-1), which accumulate to higher levels than DWV in both honeybees and Varroa destructor mites. The recombinants, VDV-1(VVD) and VDV-1(DVD1) exhibit crossovers between the 5'-UTR and the regions encoding the structural (capsid) and non-structural viral proteins. This implies that the genomes are modular and that each region may evolve independently, as demonstrated in human enteroviruses. Individual honeybee pupae were infected with a mixture of observed recombinants and DWV. A strong correlation was observed between VDV-1(DVD) levels in honeybee pupae and associated mites, suggesting that this recombinant, with a DWV-derived 5'-UTR and non-structural protein region flanking a VDV-1-derived capsid-encoding region, is better adapted to transmission between V. destructor and honeybees than the parental DWV or a recombinant bearing the VDV-1-derived 5'-UTR (VDV-1(VVD)).
Original language | English |
---|---|
Pages (from-to) | 156-161 |
Number of pages | 6 |
Journal | Journal of General Virology |
Volume | 92 |
DOIs | |
Publication status | Published - Jan 2011 |
Keywords
- HUMAN-ENTEROVIRUS-B
- PICORNA-LIKE VIRUS
- APIS-MELLIFERA
- RNA VIRUSES
- EVOLUTION
- SEQUENCES