Projects per year
Abstract
We report the crystal structures and magnetic properties of two pseudopolymorphs of the S=1/2 Ti3+ coordination framework, KTi(C2O4)2⋅xH2O. Single-crystal x-ray and powder neutron diffraction measurements on α−KTi(C2O4)2⋅xH2O confirm its structure in the tetragonal I4/mcm space group with a square planar arrangement of Ti3+ ions. Magnetometry and specific heat measurements reveal weak antiferromagnetic interactions, with J1≈7 K and J2/J1=0.11 indicating a slight frustration of nearest- and next-nearest-neighbor interactions. Below 1.8 K, α−KTi(C2O4)2⋅xH2O undergoes a transition to G-type antiferromagnetic order with magnetic moments aligned along the c axis of the tetragonal structure. The estimated ordered moment of Ti3+ in α−KTi(C2O4)2⋅xH2O is suppressed from its spin-only value to 0.62(3) μB, thus verifying the two-dimensional nature of the magnetic interactions within the system. β−KTi(C2O4)2⋅2H2O, on the other hand, realizes a three-dimensional diamondlike magnetic network of Ti3+ moments within a hexagonal P6222 structure. An antiferromagnetic exchange coupling of J≈54 K—an order of magnitude larger than in α−KTi(C2O4)2⋅xH2O—is extracted from magnetometry and specific heat data. β−KTi(C2O4)2⋅2H2O undergoes Néel ordering at TN=28 K, with the magnetic moments aligned within the ab plane and a slightly reduced ordered moment of 0.79 μB per Ti3+. Through density-functional theory calculations, we address the origin of the large difference in the exchange parameters between the α and β pseudopolymorphs. Given their observed magnetic behaviors, we propose α−KTi(C2O4)2⋅xH2O and β−KTi(C2O4)2⋅2H2O as close to ideal model S =1/2 Heisenberg square and diamond lattice antiferromagnets, respectively.
Original language | English |
---|---|
Article number | 104414 |
Number of pages | 12 |
Journal | Physical Review Materials |
Volume | 4 |
Issue number | 10 |
DOIs | |
Publication status | Published - 23 Oct 2020 |
Fingerprint
Dive into the research topics of 'Realizing square and diamond lattice S =1/2 Heisenberg antiferromagnet models in the α and β phases of the coordination framework, KTi(C2O4)2⋅xH2O'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Quantum Spin Liquids: New Chemical Paradigms in the Search for Quantum Spin Liquids
Lightfoot, P. (PI) & Morris, R. E. (CoI)
1/06/14 → 31/08/17
Project: Standard