Real-space visualization of quasiparticle dephasing near the Planckian limit in the Dirac line node material ZrSiS

Qingyu He, Lihui Zhou, Andreas W. Rost, Dennis Huang, Andreas Grüneis, Leslie M. Schoop, Hidenori Takagi

Research output: Working paperPreprint

Abstract

Dirac line node (DLN) materials are topological semimetals wherein a set of symmetry protected crossing points forms a one-dimensional (1D) line in reciprocal space. Not only are the linearly dispersing bands expected to give rise to exceptional electronic properties, but the weak screening of the Coulomb interaction near the line node may enhance electronic correlations, produce new many-body ground states, or influence the quasiparticle lifetime. We investigate the quasiparticle dynamics in the DLN material ZrSiS via spectroscopic imaging scanning tunneling microscopy (SI-STM). By studying the spatial decay of quasiparticle interference patterns (QPI) from point scatterers, we were able to directly and selectively extract the phase coherence length lQPI and lifetime τQPI for the bulk DLN excitations, which are dominated by inelastic electron-electron scattering. We find that the experimental τQPI(E) values below −40 meV are very short, likely due to the stronger Coulomb interactions, and lie at the Planckian limit ℏ/|E|. Our results corroborate a growing body of experimental reports demonstrating unusual electronic correlation effects near a DLN.
Original languageEnglish
PublisherarXiv
Publication statusPublished - 21 Oct 2021

Fingerprint

Dive into the research topics of 'Real-space visualization of quasiparticle dephasing near the Planckian limit in the Dirac line node material ZrSiS'. Together they form a unique fingerprint.

Cite this