TY - JOUR
T1 - Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip
AU - Singh, Anshuman
AU - Li, Qing
AU - Liu, Shunfa
AU - Yu, Ying
AU - Lu, Xiyuan
AU - Schneider, Christian
AU - Höfling, Sven
AU - Lawall, John
AU - Verma, Varun
AU - Mirin, Richard
AU - Nam, Sae Woo
AU - Liu, Jin
AU - Srinivasan, Kartik
N1 - A. Singh, Q. Li, and X. Lu acknowledge support under the Cooperative Research Agreement between the UMD and NIST-PML. C. Schneider and S. Höfling acknowledge support by the State of Bavaria and the BMBF within the project Q.Com-HL. C. Schneider acknowledges funding by the DFG.
PY - 2019/5
Y1 - 2019/5
N2 - Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their distribution in emission wavelength, due to inhomogeneous broadening inherent to their growth, has limited the ability to create multiple identical sources. Quantum frequency conversion can overcome this issue, particularly if implemented using scalable chip-integrated technologies. Here, we report the first demonstration to our knowledge of quantum frequency conversion of a quantum dot single-photon source on a silicon nanophotonic chip. Single photons from a quantum dot in a micropillar cavity are shifted in wavelength with an on-chip conversion efficiency ≈12%, limited by the linewidth of the quantum dot photons. The intensity autocorrelation function g(2)(0) for the frequency-converted light is antibunched with g(2)(0) = 0.290 ± 0.030, compared to the before-conversion value g(2)(0) = 0.080 ± 0.003. We demonstrate the suitability of our frequency-conversion interface as a resource for quantum dot sources by characterizing its effectiveness across a wide span of input wavelengths (840–980 nm) and its ability to achieve tunable wavelength shifts difficult to obtain by other approaches.
AB - Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their distribution in emission wavelength, due to inhomogeneous broadening inherent to their growth, has limited the ability to create multiple identical sources. Quantum frequency conversion can overcome this issue, particularly if implemented using scalable chip-integrated technologies. Here, we report the first demonstration to our knowledge of quantum frequency conversion of a quantum dot single-photon source on a silicon nanophotonic chip. Single photons from a quantum dot in a micropillar cavity are shifted in wavelength with an on-chip conversion efficiency ≈12%, limited by the linewidth of the quantum dot photons. The intensity autocorrelation function g(2)(0) for the frequency-converted light is antibunched with g(2)(0) = 0.290 ± 0.030, compared to the before-conversion value g(2)(0) = 0.080 ± 0.003. We demonstrate the suitability of our frequency-conversion interface as a resource for quantum dot sources by characterizing its effectiveness across a wide span of input wavelengths (840–980 nm) and its ability to achieve tunable wavelength shifts difficult to obtain by other approaches.
U2 - 10.1364/OPTICA.6.000563
DO - 10.1364/OPTICA.6.000563
M3 - Article
SN - 2334-2536
VL - 6
SP - 563
EP - 569
JO - Optica
JF - Optica
IS - 5
ER -