Quantitative proteomic profiling of the rat substantia nigra places glial fibrillary acidic protein at the hub of proteins dysregulated during aging: implications for idiopathic Parkinson’s disease

Yolanda Gómez-Gálvez, Heidi R. Fuller, Silvia Synowsky, Sally L. Shirran, Monte A. Gates

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
3 Downloads (Pure)

Abstract

There is a strong correlation between aging and onset of idiopathic Parkinson's disease, but little is known about whether cellular changes occur during normal aging that may explain this association. Here, proteomic and bioinformatic analysis was conducted on the substantia nigra (SN) of rats at four stages of life to identify and quantify protein changes throughout aging. This analysis revealed that proteins associated with cell adhesion, protein aggregation and oxidation‐reduction are dysregulated as early as middle age in rats. Glial fibrillary acidic protein (GFAP) was identified as a network hub connecting the greatest number of proteins altered during aging. Furthermore, the isoform of GFAP expressed in the SN varied throughout life. However, the expression levels of the rate‐limiting enzyme for dopamine production, tyrosine hydroxylase (TH), were maintained even in the oldest animals, despite a reduction in the number of dopamine neurons in the SN pars compact(SNc) as aging progressed. This age‐related increase in TH expression per neuron would likely to increase the vulnerability of neurons, since increased dopamine production would be an additional source of oxidative stress. This, in turn, would place a high demand on support systems from local astrocytes, which themselves show protein changes that could affect their functionality. Taken together, this study highlights key processes that are altered with age in the rat SN, each of which converges upon GFAP. These findings offer insight into the relationship between aging and increased challenges to neuronal viability, and indicate an important role for glial cells in the aging process.
Original languageEnglish
Number of pages16
JournalJournal of Neuroscience Research
VolumeEarly view
Early online date9 Apr 2020
DOIs
Publication statusE-pub ahead of print - 9 Apr 2020

Keywords

  • Aging
  • Dopaminergic neuron
  • Glial fibrillary acidic protein
  • Proteome
  • Proteomics
  • RRID:AB_11145309
  • RRID:AB_2109791
  • RRID:AB_228307
  • RRID:AB_228341
  • RRID:AB_2336820
  • RRID:AB_2631098
  • RRID:AB_390204
  • RRID:MGI:5651135
  • RRID:SCR_001881
  • RRID:SCR_002798
  • RRID:SCR_003070
  • RRID:SCR_004946
  • RRID:SCR_005223
  • Substantia nigra

Fingerprint

Dive into the research topics of 'Quantitative proteomic profiling of the rat substantia nigra places glial fibrillary acidic protein at the hub of proteins dysregulated during aging: implications for idiopathic Parkinson’s disease'. Together they form a unique fingerprint.

Cite this