Abstract
A sensitive and robust method for detection of free and metal-complexed cyanide in solutions is described. The method does not require a distillation step and is applicable for both low ionic strength and sea-water samples. The method is based on the reaction of cyanide with potassium tetrathionate followed by high-performance liquid chromatography (HPLC) separation and UV detection of formed thiocyanate. The detection limit of the method is 250 nmol L-1 cyanide (6.5 mu g L-1 CN-) without a pre-concentration step. Storage for three days does not significantly change the results. The sum of free and weak metal-complexed cyanide can be measured by tetrathionate derivatization at a pH of 10. The sum of free, weak metal-complexed cyanide, iron(II) and iron(III)-complexed cyanides may be measured by tetrathionate derivatization at pH 4.4. Derivatization requires heating to 90 degrees C for 20 min at pH = 10 and for 12 h at pH = 4.4. Weighted mean recoveries for free, iron(II), iron(III), nickel(II), silver(I), Cd(II) and Zn(II) complexed cyanide were in the range of 87 to 112% and weighted standard deviations were in the range of 1.7 to 10.0%. The method is not applicable for cyanide complexes of gold and cobalt. We illustrate an application of cyanide quantification using pore-waters from the Delaware Great Marsh.
Original language | English |
---|---|
Pages (from-to) | 1506-1517 |
Number of pages | 12 |
Journal | International journal of environmental analytical chemistry |
Volume | 92 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2012 |
Keywords
- cyanide
- iron-cyanide complexes
- metallo-cyanide complexes
- tetrathionate
- liquid chromatography
- PERFORMANCE LIQUID-CHROMATOGRAPHY
- ION-INTERACTION CHROMATOGRAPHY
- ZERO-VALENT SULFUR
- SAMPLE PRECONCENTRATION
- AQUATIC SYSTEMS
- PROCESS LIQUORS
- PHASE
- POLYSULFIDES
- THIOCYANATE
- CYANOLYSIS