TY - JOUR
T1 - Processing of fast amplitude modulations in bat auditory cortex matches communication call-specific sound features
AU - Hörpel, Stephen Gareth
AU - Firzlaff, Uwe
N1 - Funding Information:
This work was supported by Human Frontier Science Program Grant RGP0058 (to U. Firzlaff).
Publisher Copyright:
© 2019 the American Physiological Society.
PY - 2019/4
Y1 - 2019/4
N2 - Bats use a large repertoire of calls for social communication. In the bat Phyllostomus discolor, social communication calls are often characterized by sinusoidal amplitude and frequency modulations with modulation frequencies in the range of 100-130 Hz. However, peaks in mammalian auditory cortical modulation transfer functions are typically limited to modulation frequencies below 100 Hz. We investigated the coding of sinusoidally amplitude modulated sounds in auditory cortical neurons in P. discolor by constructing rate and temporal modulation transfer functions. Neuronal responses to playbacks of various communication calls were additionally recorded and compared with the neurons’ responses to sinusoidally amplitude-modulated sounds. Cortical neurons in the posterior dorsal field of the auditory cortex were tuned to unusually high modulation frequencies: rate modulation transfer functions often peaked around 130 Hz (median: 87 Hz), and the median of the highest modulation frequency that evoked significant phaselocking was also 130 Hz. Both values are much higher than reported from the auditory cortex of other mammals, with more than 51% of the units preferring modulation frequencies exceeding 100 Hz. Conspicuously, the fast modulations preferred by the neurons match the fast amplitude and frequency modulations of prosocial, and mostly of aggressive, communication calls in P. discolor. We suggest that the preference for fast amplitude modulations in the P. discolor dorsal auditory cortex serves to reliably encode the fast modulations seen in their communication calls. NEW & NOTEWORTHY Neural processing of temporal sound features is crucial for the analysis of communication calls. In bats, these calls are often characterized by fast temporal envelope modulations. Because auditory cortex neurons typically encode only low modulation frequencies, it is unclear how species-specific vocalizations are cortically processed. We show that auditory cortex neurons in the bat Phyllostomus discolor encode fast temporal envelope modulations. This property improves response specificity to communication calls and thus might support species-specific communication.
AB - Bats use a large repertoire of calls for social communication. In the bat Phyllostomus discolor, social communication calls are often characterized by sinusoidal amplitude and frequency modulations with modulation frequencies in the range of 100-130 Hz. However, peaks in mammalian auditory cortical modulation transfer functions are typically limited to modulation frequencies below 100 Hz. We investigated the coding of sinusoidally amplitude modulated sounds in auditory cortical neurons in P. discolor by constructing rate and temporal modulation transfer functions. Neuronal responses to playbacks of various communication calls were additionally recorded and compared with the neurons’ responses to sinusoidally amplitude-modulated sounds. Cortical neurons in the posterior dorsal field of the auditory cortex were tuned to unusually high modulation frequencies: rate modulation transfer functions often peaked around 130 Hz (median: 87 Hz), and the median of the highest modulation frequency that evoked significant phaselocking was also 130 Hz. Both values are much higher than reported from the auditory cortex of other mammals, with more than 51% of the units preferring modulation frequencies exceeding 100 Hz. Conspicuously, the fast modulations preferred by the neurons match the fast amplitude and frequency modulations of prosocial, and mostly of aggressive, communication calls in P. discolor. We suggest that the preference for fast amplitude modulations in the P. discolor dorsal auditory cortex serves to reliably encode the fast modulations seen in their communication calls. NEW & NOTEWORTHY Neural processing of temporal sound features is crucial for the analysis of communication calls. In bats, these calls are often characterized by fast temporal envelope modulations. Because auditory cortex neurons typically encode only low modulation frequencies, it is unclear how species-specific vocalizations are cortically processed. We show that auditory cortex neurons in the bat Phyllostomus discolor encode fast temporal envelope modulations. This property improves response specificity to communication calls and thus might support species-specific communication.
KW - Amplitude modulation
KW - Auditory cortex
KW - Social communication
KW - Temporal processing
UR - http://www.scopus.com/inward/record.url?scp=85064894583&partnerID=8YFLogxK
U2 - 10.1152/jn.00748.2018
DO - 10.1152/jn.00748.2018
M3 - Article
C2 - 30785811
AN - SCOPUS:85064894583
SN - 0022-3077
VL - 121
SP - 1501
EP - 1512
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 4
ER -