Abstract
A priority queue transforms an input permutation a of some set of size n into an output permutation tau. The set R(n) of such related pairs (sigma, tau) is studied. Efficient algorithms for determining s(tau) = \sigma : (sigma,tau) epsilon R(n)/ and t (sigma) = \tau : (sigma,tau) epsilon R(n)\ are given, a new proof that \R(n)\ = (n + 1)(n-1) is given, and the transitive closure of R(n) is found.
Original language | English |
---|---|
Pages (from-to) | 1225-1230 |
Number of pages | 6 |
Journal | SIAM Journal on Computing |
Volume | 23 |
Issue number | 6 |
DOIs | |
Publication status | Published - Dec 1994 |
Keywords
- PRIORITY QUEUE
- PERMUTATION
- ENUMERATION