TY - JOUR
T1 - Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium
AU - Hofstetter, Kyle
AU - Samson, Alfred Junio
AU - Narayanan, Sumaletha
AU - Thangadurai, Venkataraman
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/6/30
Y1 - 2018/6/30
N2 - Fast lithium-ion conducting garnet-type metal oxides are promising membranes for next-generation all-solid-state Li batteries and beyond Li-ion batteries, including Li-air and Li-S batteries, due to their high total Li-ion conductivity and excellent chemical stability against reaction with elemental Li. Several studies have been reported on structure-chemical composition-ionic conductivity property in Li-stuffed garnet-type metal oxides. Here, an overview of the chemical and electrochemical stability of lithium-based garnets against moisture/humidity, aqueous solutions, carbon dioxide, sulfur, and metallic lithium are analyzed. Moisture and aqueous stability studies focus on understanding the crystal structure stability, the proton exchange capacity as a function of Li content in Li-stuffed garnets, and how the protonated species affect the crystal structure and mass transport properties. H+/Li+ exchange was found to be in the range of 2-100%. Stability concerning Li-ion conductivity and morphology under carbon dioxide are discussed. Interfacial chemical stability with lithium metal characterized by electrochemical stability window, Li dendrite formation and area specific resistance (ASR) for the reaction Li⇌Li++e− are presented. Recent attempts to suppress dendrite formation and to reduce ASR via surface modification are also highlighted. Li and Li-stuffed garnet interface ASR values are shown to be as high as >2000 Ω cm2 and as low as 1 Ω cm2 at room temperature for surface modified Li-stuffed samples. Furthermore, recent studies on Li-S battery utilizing chemically stable Li - garnet electrolyte are also discussed.
AB - Fast lithium-ion conducting garnet-type metal oxides are promising membranes for next-generation all-solid-state Li batteries and beyond Li-ion batteries, including Li-air and Li-S batteries, due to their high total Li-ion conductivity and excellent chemical stability against reaction with elemental Li. Several studies have been reported on structure-chemical composition-ionic conductivity property in Li-stuffed garnet-type metal oxides. Here, an overview of the chemical and electrochemical stability of lithium-based garnets against moisture/humidity, aqueous solutions, carbon dioxide, sulfur, and metallic lithium are analyzed. Moisture and aqueous stability studies focus on understanding the crystal structure stability, the proton exchange capacity as a function of Li content in Li-stuffed garnets, and how the protonated species affect the crystal structure and mass transport properties. H+/Li+ exchange was found to be in the range of 2-100%. Stability concerning Li-ion conductivity and morphology under carbon dioxide are discussed. Interfacial chemical stability with lithium metal characterized by electrochemical stability window, Li dendrite formation and area specific resistance (ASR) for the reaction Li⇌Li++e− are presented. Recent attempts to suppress dendrite formation and to reduce ASR via surface modification are also highlighted. Li and Li-stuffed garnet interface ASR values are shown to be as high as >2000 Ω cm2 and as low as 1 Ω cm2 at room temperature for surface modified Li-stuffed samples. Furthermore, recent studies on Li-S battery utilizing chemically stable Li - garnet electrolyte are also discussed.
KW - Chemical reactivity
KW - Chemical stability
KW - Interfacial resistance
KW - Li cycling
KW - LiLaZrO (LLZO)
KW - Lithium garnet
U2 - 10.1016/j.jpowsour.2018.04.016
DO - 10.1016/j.jpowsour.2018.04.016
M3 - Article
AN - SCOPUS:85046536075
SN - 0378-7753
VL - 390
SP - 297
EP - 312
JO - Journal of Power Sources
JF - Journal of Power Sources
ER -