Abstract
Original language | English |
---|---|
Article number | pgac093 |
Number of pages | 15 |
Journal | PNAS Nexus |
Volume | 1 |
Issue number | 3 |
Early online date | 5 Jul 2022 |
DOIs | |
Publication status | Published - 31 Jul 2022 |
Keywords
- COVID-19
- Social distancing
- Hygiene
- Policy support
- Psychology
- Machine learning
- Public health measures
Access to Document
- 10.1093/pnasnexus/pgac093Licence: CC BY
- Pavlovic_2022_PNASN_Predictingattitudinal_CC
Copyright © The Author(s) 2022. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Final published version, 8.22 MBLicence: CC BY
Fingerprint
Dive into the research topics of 'Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: PNAS Nexus, Vol. 1, No. 3, pgac093, 31.07.2022.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning
AU - Pavlović, Tomislav
AU - Azevedo, Flavio
AU - De, Koustav
AU - Riaño-Moreno, Julián C
AU - Maglić, Marina
AU - Gkinopoulos, Theofilos
AU - Donnelly-Kehoe, Patricio Andreas
AU - Payán-Gómez, César
AU - Huang, Guanxiong
AU - Kantorowicz, Jaroslaw
AU - Birtel, Michèle D
AU - Schönegger, Philipp
AU - Capraro, Valerio
AU - Santamaría-García, Hernando
AU - Yucel, Meltem
AU - Ibanez, Agustin
AU - Rathje, Steve
AU - Wetter, Erik
AU - Stanojević, Dragan
AU - van Prooijen, Jan-Willem
AU - Hesse, Eugenia
AU - Elbaek, Christian T
AU - Franc, Renata
AU - Pavlović, Zoran
AU - Mitkidis, Panagiotis
AU - Cichocka, Aleksandra
AU - Gelfand, Michele
AU - Alfano, Mark
AU - Ross, Robert M
AU - Sjåstad, Hallgeir
AU - Nezlek, John B
AU - Cislak, Aleksandra
AU - Lockwood, Patricia
AU - Abts, Koen
AU - Agadullina, Elena
AU - Amodio, David M
AU - Apps, Matthew A J
AU - Aruta, John Jamir Benzon
AU - Besharati, Sahba
AU - Bor, Alexander
AU - Choma, Becky
AU - Cunningham, William
AU - Ejaz, Waqas
AU - Farmer, Harry
AU - Findor, Andrej
AU - Gjoneska, Biljana
AU - Gualda, Estrella
AU - Huynh, Toan L D
AU - Imran, Mostak Ahamed
AU - Israelashvili, Jacob
AU - Kantorowicz-Reznichenko, Elena
AU - Krouwel, André
AU - Kutiyski, Yordan
AU - Laakasuo, Michael
AU - Lamm, Claus
AU - Levy, Jonathan
AU - Leygue, Caroline
AU - Lin, Ming-Jen
AU - Mansoor, Mohammad Sabbir
AU - Marie, Antoine
AU - Mayiwar, Lewend
AU - Mazepus, Honorata
AU - McHugh, Cillian
AU - Olsson, Andreas
AU - Otterbring, Tobias
AU - Packer, Dominic
AU - Palomäki, Jussi
AU - Perry, Anat
AU - Petersen, Michael Bang
AU - Puthillam, Arathy
AU - Rothmund, Tobias
AU - Schmid, Petra C
AU - Stadelmann, David
AU - Stoica, Augustin
AU - Stoyanov, Drozdstoy
AU - Stoyanova, Kristina
AU - Tewari, Shruti
AU - Todosijević, Bojan
AU - Torgler, Benno
AU - Tsakiris, Manos
AU - Tung, Hans H
AU - Umbreș, Radu Gabriel
AU - Vanags, Edmunds
AU - Vlasceanu, Madalina
AU - Vonasch, Andrew J
AU - Zhang, Yucheng
AU - Abad, Mohcine
AU - Adler, Eli
AU - Mdarhri, Hamza Alaoui
AU - Antazo, Benedict
AU - Ay, F Ceren
AU - Ba, Mouhamadou El Hady
AU - Barbosa, Sergio
AU - Bastian, Brock
AU - Berg, Anton
AU - Białek, Michał
AU - Bilancini, Ennio
AU - Bogatyreva, Natalia
AU - Boncinelli, Leonardo
AU - Booth, Jonathan E
AU - Borau, Sylvie
AU - Buchel, Ondrej
AU - de Carvalho, Chrissie Ferreira
AU - Celadin, Tatiana
AU - Cerami, Chiara
AU - Chalise, Hom Nath
AU - Cheng, Xiaojun
AU - Cian, Luca
AU - Cockcroft, Kate
AU - Conway, Jane
AU - Córdoba-Delgado, Mateo A
AU - Crespi, Chiara
AU - Crouzevialle, Marie
AU - Cutler, Jo
AU - Cypryańska, Marzena
AU - Dabrowska, Justyna
AU - Davis, Victoria H
AU - Minda, John Paul
AU - Dayley, Pamala N
AU - Delouvée, Sylvain
AU - Denkovski, Ognjan
AU - Dezecache, Guillaume
AU - Dhaliwal, Nathan A
AU - Diato, Alelie
AU - Paolo, Roberto Di
AU - Dulleck, Uwe
AU - Ekmanis, Jānis
AU - Etienne, Tom W
AU - Farhana, Hapsa Hossain
AU - Farkhari, Fahima
AU - Fidanovski, Kristijan
AU - Flew, Terry
AU - Fraser, Shona
AU - Frempong, Raymond Boadi
AU - Fugelsang, Jonathan
AU - Gale, Jessica
AU - García-Navarro, E Begoña
AU - Garladinne, Prasad
AU - Gray, Kurt
AU - Griffin, Siobhán M
AU - Gronfeldt, Bjarki
AU - Gruber, June
AU - Halperin, Eran
AU - Herzon, Volo
AU - Hruška, Matej
AU - Hudecek, Matthias F C
AU - Isler, Ozan
AU - Jangard, Simon
AU - Jørgensen, Frederik
AU - Keudel, Oleksandra
AU - Koppel, Lina
AU - Koverola, Mika
AU - Kunnari, Anton
AU - Leota, Josh
AU - Lermer, Eva
AU - Li, Chunyun
AU - Longoni, Chiara
AU - McCashin, Darragh
AU - Mikloušić, Igor
AU - Molina-Paredes, Juliana
AU - Monroy-Fonseca, César
AU - Morales-Marente, Elena
AU - Moreau, David
AU - Muda, Rafał
AU - Myer, Annalisa
AU - Nash, Kyle
AU - Nitschke, Jonas P
AU - Nurse, Matthew S
AU - de Mello, Victoria Oldemburgo
AU - Palacios-Galvez, M Soledad
AU - Palomäki, Jussi
AU - Pan, Yafeng
AU - Papp, Zsófia
AU - Pärnamets, Philip
AU - Paruzel-Czachura, Mariola
AU - Perander, Silva
AU - Pitman, Michael
AU - Raza, Ali
AU - Rêgo, Gabriel Gaudencio
AU - Robertson, Claire
AU - Rodríguez-Pascual, Iván
AU - Saikkonen, Teemu
AU - Salvador-Ginez, Octavio
AU - Sampaio, Waldir M
AU - Santi, Gaia Chiara
AU - Schultner, David
AU - Schutte, Enid
AU - Scott, Andy
AU - Skali, Ahmed
AU - Stefaniak, Anna
AU - Sternisko, Anni
AU - Strickland, Brent
AU - Strickland, Brent
AU - Thomas, Jeffrey P
AU - Tinghög, Gustav
AU - Traast, Iris J
AU - Tucciarelli, Raffaele
AU - Tyrala, Michael
AU - Ungson, Nick D
AU - Uysal, Mete Sefa
AU - Van Rooy, Dirk
AU - Västfjäll, Daniel
AU - Vieira, Joana B
AU - von Sikorski, Christian
AU - Walker, Alexander C
AU - Watermeyer, Jennifer
AU - Willardt, Robin
AU - Wohl, Michael J A
AU - Wójcik, Adrian Dominik
AU - Wu, Kaidi
AU - Yamada, Yuki
AU - Yilmaz, Onurcan
AU - Yogeeswaran, Kumar
AU - Ziemer, Carolin-Theresa
AU - Zwaan, Rolf A
AU - Boggio, Paulo Sergio
AU - Whillans, Ashley
AU - Van Lange, Paul A M
AU - Prasad, Rajib
AU - Onderco, Michal
AU - O'Madagain, Cathal
AU - Nesh-Nash, Tarik
AU - Laguna, Oscar Moreda
AU - Kutiyski, Yordan
AU - Kubin, Emily
AU - Gümren, Mert
AU - Fenwick, Ali
AU - Ertan, Arhan S
AU - Bernstein, Michael J
AU - Amara, Hanane
AU - Van Bavel, Jay Joseph
PY - 2022/7/31
Y1 - 2022/7/31
N2 - At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multi-national data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution—individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar was found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-negligible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.
AB - At the beginning of 2020, COVID-19 became a global problem. Despite all the efforts to emphasize the relevance of preventive measures, not everyone adhered to them. Thus, learning more about the characteristics determining attitudinal and behavioral responses to the pandemic is crucial to improving future interventions. In this study, we applied machine learning on the multi-national data collected by the International Collaboration on the Social and Moral Psychology of COVID-19 (N = 51,404) to test the predictive efficacy of constructs from social, moral, cognitive, and personality psychology, as well as socio-demographic factors, in the attitudinal and behavioral responses to the pandemic. The results point to several valuable insights. Internalized moral identity provided the most consistent predictive contribution—individuals perceiving moral traits as central to their self-concept reported higher adherence to preventive measures. Similar was found for morality as cooperation, symbolized moral identity, self-control, open-mindedness, collective narcissism, while the inverse relationship was evident for the endorsement of conspiracy theories. However, we also found a non-negligible variability in the explained variance and predictive contributions with respect to macro-level factors such as the pandemic stage or cultural region. Overall, the results underscore the importance of morality-related and contextual factors in understanding adherence to public health recommendations during the pandemic.
KW - COVID-19
KW - Social distancing
KW - Hygiene
KW - Policy support
KW - Psychology
KW - Machine learning
KW - Public health measures
U2 - 10.1093/pnasnexus/pgac093
DO - 10.1093/pnasnexus/pgac093
M3 - Article
SN - 2752-6542
VL - 1
JO - PNAS Nexus
JF - PNAS Nexus
IS - 3
M1 - pgac093
ER -