TY - JOUR
T1 - Polymorphism and structural defects in Li2FeSiO4
AU - Boulineau, Adrien
AU - Sirisopanaporn, Chutchamon
AU - Dominko, Robert
AU - Armstrong, A. Robert
AU - Bruce, Peter G.
AU - Masquelier, Christian
PY - 2010
Y1 - 2010
N2 - Li2FeSiO4, an interesting material with potential applications as the positive electrode in lithium batteries, shows complex crystal chemistry due to the versatility of cation ordering (Li+, Fe2+, Si4+) within tetrahedral sites of buckled hexagonal close packed layers of oxygen atoms. This study, conducted through X-ray and electron diffraction experiments, focuses on three samples of Li2FeSiO4 (obtained from ceramic synthesis at 700 degrees C, 800 degrees C and 900 degrees C) which may contain significant amounts of structural defects. Two polymorphs of Li2FeSiO4 were isolated and investigated through X-ray diffraction and electron microscopy. A new form of Li2FeSiO4 (space group Pmnb with a = 6.2853(5), b = 10.6592(8) angstrom and c = 5.0367(4) angstrom or alternatively P2(1)/n with a = 6.2819(1) angstrom, b = 10.6575(2) angstrom, c = 5.0371(1) angstrom, beta = 90.032(7)degrees) prepared at 900 degrees C, shows cooperative small displacements of lithium cations from one tetrahedral site (up) to another (down). Attempts to prepare the second, low-temperature, polymorph (space group P2(1)/n, a = 8.2253(5) angstrom, b = 5.0220(1) angstrom, c = 8.2381(4) angstrom, beta = 99.230(2)degrees) previously reported by Nishimura et al., lead to crystals exempt of structural defects (at 700 degrees C) or built up by an intergrowth between the low temperature polymorph and a residue of the high temperature one.
AB - Li2FeSiO4, an interesting material with potential applications as the positive electrode in lithium batteries, shows complex crystal chemistry due to the versatility of cation ordering (Li+, Fe2+, Si4+) within tetrahedral sites of buckled hexagonal close packed layers of oxygen atoms. This study, conducted through X-ray and electron diffraction experiments, focuses on three samples of Li2FeSiO4 (obtained from ceramic synthesis at 700 degrees C, 800 degrees C and 900 degrees C) which may contain significant amounts of structural defects. Two polymorphs of Li2FeSiO4 were isolated and investigated through X-ray diffraction and electron microscopy. A new form of Li2FeSiO4 (space group Pmnb with a = 6.2853(5), b = 10.6592(8) angstrom and c = 5.0367(4) angstrom or alternatively P2(1)/n with a = 6.2819(1) angstrom, b = 10.6575(2) angstrom, c = 5.0371(1) angstrom, beta = 90.032(7)degrees) prepared at 900 degrees C, shows cooperative small displacements of lithium cations from one tetrahedral site (up) to another (down). Attempts to prepare the second, low-temperature, polymorph (space group P2(1)/n, a = 8.2253(5) angstrom, b = 5.0220(1) angstrom, c = 8.2381(4) angstrom, beta = 99.230(2)degrees) previously reported by Nishimura et al., lead to crystals exempt of structural defects (at 700 degrees C) or built up by an intergrowth between the low temperature polymorph and a residue of the high temperature one.
KW - BATTERY CATHODE MATERIAL
KW - ELECTROCHEMICAL PERFORMANCE
KW - CRYSTAL-CHEMISTRY
KW - LI2MNSIO4
KW - STABILITY
KW - OXIDES
KW - LI3PO4
UR - http://www.scopus.com/inward/record.url?scp=77954250328&partnerID=8YFLogxK
U2 - 10.1039/c002815k
DO - 10.1039/c002815k
M3 - Article
SN - 1477-9226
VL - 39
SP - 6310
EP - 6316
JO - Dalton Transactions
JF - Dalton Transactions
IS - 27
ER -