Projects per year
Abstract
We present an example of one-to-one correspondence between poleward moving auroral arcs (PMAAs) and Pc5 oscillations observed at the Time History of Events and Macroscale Interactions during Substorms (THEMIS) Ground Based Observatory station Gillam. The PMAAs consisted of four successive intensifications (named PMAA1, PMAA2, PMAA3 and PMAA4) with a period of 3∼4 min over the magnetic latitudes from 68° to 70° in the auroral oval and varied coherently with the H-component of magnetic field Pc5 oscillations. PMAA1 and PMAA2 appeared clearly at the magnetic latitude ∼69°, and the following two PMAAs, which were dimmer, appeared at the magnetic latitude ∼68°. PMAA1 and PMAA2 exhibited features of field-line resonances (FLRs) with the maximum luminosity at the magnetic latitude ∼69.5° and ∼69.4°, respectively. The ground Pc5 oscillations were concurrent with toroidal mode Pc5 oscillation observed at the THEMIS-D, -E, and -A satellites at ∼4 MLT in the outer magnetosphere. The magnetic and electric field oscillations at THEMIS were synchronized with the PMAAs. The magnetic energy of the THEMIS Pc5 oscillations is estimated using a numerical model of damped toroidal oscillations and compared with the kinetic energy of precipitating electrons associated with the field aligned current (FAC) carried by the toroidal oscillations. The result reveals that the Pc5 magnetic energy is much larger than the kinetic energy, implying the magnetic energy is important for producing auroral emissions in the ionosphere. We also perform a simulation of the relationship between PMAAs and toroidal mode Pc5 oscillations. The simulation explains the observed spatial and temporal structures of the PMAAs.
Original language | English |
---|---|
Article number | e2022JA030362 |
Number of pages | 17 |
Journal | Journal of Geophysical Research: Space Physics |
Volume | 127 |
Issue number | 8 |
Early online date | 15 Aug 2022 |
DOIs | |
Publication status | Published - 15 Aug 2022 |
Keywords
- ULF Waves
- Pc5 oscillation
- Aurora
- Magnetosphere
- Ionosphere
Fingerprint
Dive into the research topics of 'Poleward moving auroral Arcs and Pc5 oscillations'. Together they form a unique fingerprint.Projects
- 1 Active
-
Solar and Magnetospheric Plasmas: Solar and Magnetospheric Plasmas: Theory and Application
Neukirch, T. (PI), Archontis, V. (CoI), De Moortel, I. (CoI), Hood, A. W. (CoI), Mackay, D. H. (CoI), Parnell, C. E. (CoI) & Wright, A. N. (CoI)
Science & Technology Facilities Council
1/04/22 → 31/03/25
Project: Standard
Datasets
-
Data for Figure 9, Sakurai et al, 2022
Elsden, T. (Creator), Figshare, 2022
DOI: 10.6084/m9.figshare.19123166.v1
Dataset