Abstract
There is considerable controversy over the nature of geophysically recognized low-velocity-high-conductivity zones (LV-HCZs) within the Tibetan crust, and their role in models for the development of the Tibetan Plateau. Here we report petrological and geochemical data on magmas erupted 4.7-0.3 Myr ago in central and northern Tibet, demonstrating that they were generated by partial melting of crustal rocks at temperatures of 700-1,050 degrees C and pressures of 0.5-1.5 GPa. Thus Pliocene-Quaternary melting of crustal rocks occurred at depths of 15-50 km in areas where the LV-HCZs have been recognized. This provides new petrological evidence that the LV-HCZs are sources of partial melt. It is inferred that crustal melting played a key role in triggering crustal weakening and outward crustal flow in the expansion of the Tibetan Plateau.
Original language | English |
---|---|
Article number | 11888 |
Number of pages | 11 |
Journal | Nature Communications |
Volume | 7 |
DOIs | |
Publication status | Published - 16 Jun 2016 |