Photopolymerization with light fields possessing orbital angular momentum: Generation of helical microfibers

Junhyung Lee, Yoshihiko Arita, Shunsuke Toyoshima, Katsuhiko Miyamoto, Paris Panagiotopoulos, Ewan Wright, Kishan Dholakia, Takashige Omatsu

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)
8 Downloads (Pure)

Abstract

Photopolymerization is a powerful technique to create arbitrary micro-objects with a high spatial resolution. Importantly, to date all photopolymerization studies have been performed with incident light fields with planar wavefronts and have solely exploited the intensity profile of the incident beam. We investigate photopolymerization with light fields possessing orbital angular momentum, characterized by the topological charge . We show both experimentally and theoretically that, as a consequence of nonlinear self-focusing of the optical field, photopolymerization creates an annular-shaped vortex-soliton and an associated optical fiber, which breaks up into solitons or microfibers. These microfibers exhibit helical trajectories with a chirality determined by the sign of due to the orbital angular momentum of the light field and form a bundle of helical-microfibers. This research opens up a new application for light fields with orbital angular momentum, and our generated microfibers may have applications in optical communications and micromanipulation.
Original languageEnglish
Pages (from-to)4156–4163
JournalACS Photonics
Volume5
Issue number10
Early online date8 Oct 2018
DOIs
Publication statusPublished - 17 Oct 2018

Keywords

  • Micro-optical devices
  • Microstructured fibers
  • Optical vortices
  • Polymer waveguides

Fingerprint

Dive into the research topics of 'Photopolymerization with light fields possessing orbital angular momentum: Generation of helical microfibers'. Together they form a unique fingerprint.

Cite this