TY - JOUR
T1 - Photon-number parity of heralded single photons from a Bragg-reflection waveguide reconstructed loss-tolerantly via moment generating function
AU - Laiho, K.
AU - Schmidt, M.
AU - Suchomel, H.
AU - Kamp, M.
AU - Höfling, S.
AU - Schneider, C.
AU - Beyer, J.
AU - Weihs, G.
AU - Reitzenstein, S.
N1 - Funding: The work reported in this paper was partially funded by project EMPIR 17FUN06 SIQUST. This project has received funding from the EMPIR programme cofinanced by the Participating States and from the European Union’s Horizon 2020 research and innovation program.
PY - 2019/10/9
Y1 - 2019/10/9
N2 - Due to their strict photon-number correlation, the twin beams produced in parametric down-conversion (PDC) work well for heralded state generation. Often, however, this state manipulation is distorted by the optical losses in the herald and by the higher photon-number contributions inevitable in the PDC process. In order to find feasible figures of merit for characterizing the heralded states, we investigate their normalized factorial moments of the photon number that can be accessed regardless of the optical losses in the detection. We then perform a measurement of the joint photon statistics of twin beams from a semiconductor Bragg-reflection waveguide with transition-edge sensors acting as photon-number-resolving detectors. We extract the photon-number parity of heralded single photons in a loss-tolerant fashion by utilizing the moment generating function. The photon-number parity is highly practicable in quantum state characterization, since it takes into account the complete photon-number content of the target state.
AB - Due to their strict photon-number correlation, the twin beams produced in parametric down-conversion (PDC) work well for heralded state generation. Often, however, this state manipulation is distorted by the optical losses in the herald and by the higher photon-number contributions inevitable in the PDC process. In order to find feasible figures of merit for characterizing the heralded states, we investigate their normalized factorial moments of the photon number that can be accessed regardless of the optical losses in the detection. We then perform a measurement of the joint photon statistics of twin beams from a semiconductor Bragg-reflection waveguide with transition-edge sensors acting as photon-number-resolving detectors. We extract the photon-number parity of heralded single photons in a loss-tolerant fashion by utilizing the moment generating function. The photon-number parity is highly practicable in quantum state characterization, since it takes into account the complete photon-number content of the target state.
KW - Factorial moment of photon number
KW - Photon-number parity
KW - Moment generating function
KW - Parametric-down-conversion
KW - Bragg-reflection waveguide
KW - Transition-edge sensor
U2 - 10.1088/1367-2630/ab42ae
DO - 10.1088/1367-2630/ab42ae
M3 - Article
SN - 1367-2630
VL - 21
SP - 1
EP - 9
JO - New Journal of Physics
JF - New Journal of Physics
M1 - 103025
ER -