Performance evolution of niobium doped lanthanum strontium ferrate perovskite anode for solid oxide fuel cells

J. Li, Z. Lü, J. T.S. Irvine

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Downloads (Pure)

Abstract

In this paper, evolutions of La0.8Sr0.2Fe0.9Nb0.1O3-δ (LSFNb) anodes for solid oxide fuel cells (SOFCs) with different microstructures are investigated, which are prepared by adjusting the weight ratio of electrode powder/organic binder during the preparation of slurries. AC impedance spectra clearly reveals that LSFNb anode made from 7:4-slurry shows better microstructure and lower polarization resistance (RP) compared with those of LSFNb anode made from 7:2.5-slurry. Better electrochemical performance is obtained on the single cells using 7:4-anode and cathode slurries with maximum power density (MPD) reaching 331.9 mW·cm-2 after discharged for 200 h fueled by H2, compared with 285.8 mW·cm-2 of the cell made from 7:2.5-slurries. The two cells exhibit excellent stability with undetectable degenerations for over 200 h. These results demonstrate that LSFNb made from thin slurries possesses better electrochemical performance and can active continuously without significant agglomeration, making porous LSFNb a promising perovskite anode candidate for SOFCs.
Original languageEnglish
Title of host publicationSolid Oxide Fuel Cells 16, SOFC XVI
EditorsK. Eguchi, S. C. Singhal
PublisherElectrochemical Society, Inc.
Pages1693-1700
Number of pages8
ISBN (Electronic)9781607685395
DOIs
Publication statusPublished - 8 Sept 2019
Event16th International Symposium on Solid Oxide Fuel Cells, SOFC XVI - Kyoto, Japan
Duration: 8 Sept 201913 Sept 2019
Conference number: 16
http://www.eguchi-lab.ehcc.kyoto-u.ac.jp/SOFC_XVI/

Publication series

NameECS Transactions
Number1
Volume91
ISSN (Print)1938-6737
ISSN (Electronic)1938-5862

Conference

Conference16th International Symposium on Solid Oxide Fuel Cells, SOFC XVI
Abbreviated titleSOFC
Country/TerritoryJapan
CityKyoto
Period8/09/1913/09/19
Internet address

Fingerprint

Dive into the research topics of 'Performance evolution of niobium doped lanthanum strontium ferrate perovskite anode for solid oxide fuel cells'. Together they form a unique fingerprint.

Cite this