Abstract
Staphylococcus aureus and Streptococcus pyogenes, two important human pathogens, target host fibronectin (Fn) in their adhesion to and invasion of host cells(1,2). Fibronectin-binding proteins (FnBPs), anchored in the bacterial cell wall, have multiple Fn-binding repeats(3) in an unfolded(4,5) region of the protein. The bacterium-binding site in the amino-terminal domain ((1-5)F1) of Fn contains five sequential Fn type 1 (F1) modules. Here we show the structure of a streptococcal (S. dysgalactiae) FnBP peptide (B3)(6,7) in complex with the module pair (1)F1(2)F1. This identifies (1)F1-and (2)F1-binding motifs in B3 that form additional antiparallel beta-strands on sequential F1 modules-the first example of a tandem beta-zipper. Sequence analyses of larger regions of FnBPs from S. pyogenes and S. aureus reveal a repeating pattern of F1-binding motifs that match the pattern of F1 modules in (1-5)F1 of Fn. In the process of Fn-mediated invasion of host cells, therefore, the bacterial proteins seem to exploit the modular structure of Fn by forming extended tandem beta-zippers. This work is a vital step forward in explaining the full mechanism of the integrin-dependent(2,8) FnBP-mediated invasion of host cells.
Original language | English |
---|---|
Pages (from-to) | 177-181 |
Number of pages | 5 |
Journal | Nature |
Volume | 423 |
Issue number | 6936 |
DOIs | |
Publication status | Published - 8 May 2003 |
Keywords
- F1 MODULE PAIR
- STAPHYLOCOCCUS-AUREUS
- BINDING-PROTEIN
- STREPTOCOCCUS-PYOGENES
- NMR-SPECTROSCOPY
- EPITHELIAL-CELLS
- CHEMICAL-SHIFT
- LIGAND-BINDING
- ADHERENCE
- SEQUENCE