Parameter clustering in Bayesian functional principal component analysis of neuroscientific data

Nicolò Margaritella*, Vanda Inácio, Ruth King

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)


The extraordinary advancements in neuroscientific technology for brain recordings over the last decades have led to increasingly complex spatiotemporal data sets. To reduce oversimplifications, new models have been developed to be able to identify meaningful patterns and new insights within a highly demanding data environment. To this extent, we propose a new model called parameter clustering functional principal component analysis (PCl-fPCA) that merges ideas from functional data analysis and Bayesian nonparametrics to obtain a flexible and computationally feasible signal reconstruction and exploration of spatiotemporal neuroscientific data. In particular, we use a Dirichlet process Gaussian mixture model to cluster functional principal component scores within the standard Bayesian functional PCA framework. This approach captures the spatial dependence structure among smoothed time series (curves) and its interaction with the time domain without imposing a prior spatial structure on the data. Moreover, by moving the mixture from data to functional principal component scores, we obtain a more general clustering procedure, thus allowing a higher level of intricate insight and understanding of the data. We present results from a simulation study showing improvements in curve and correlation reconstruction compared with different Bayesian and frequentist fPCA models and we apply our method to functional magnetic resonance imaging and electroencephalogram data analyses providing a rich exploration of the spatiotemporal dependence in brain time series.

Original languageEnglish
Pages (from-to)167-184
Number of pages18
JournalStatistics in Medicine
Issue number1
Early online date23 Dec 2020
Publication statusPublished - 15 Jan 2021


  • Bayes Theorem
  • Cluster Analysis
  • Computer Simulation
  • Humans
  • Magnetic Resonance Imaging
  • Principal Component Analysis
  • Dirichlet process
  • Functional data analysis
  • Neuroscience
  • Spatiotemporal data


Dive into the research topics of 'Parameter clustering in Bayesian functional principal component analysis of neuroscientific data'. Together they form a unique fingerprint.

Cite this