TY - JOUR
T1 - Overcoming power broadening of the quantum dot emission in a pure wurtzite nanowire
AU - Reimer, Michael E.
AU - Bulgarini, Gabriele
AU - Fognini, A.
AU - Heeres, Reinier W.
AU - Witek, Barbara J.
AU - Versteegh, Marijn A. M.
AU - Rubino, A.
AU - Zwiller, Val
AU - Braun, T.
AU - Kamp, M.
AU - Höfling, Sven
AU - Dalacu, Dan
AU - Lapointe, Jean
AU - Poole, Philip J.
AU - Zwiller, V.
N1 - This work was supported by the European Union Seventh Framework Programme 209 (FP7/2007-2013) under Grant Agreement No. 601126 210 (HANAS), the Dutch Organization for Fundamental Research on Matter (FOM), and Industry Canada.
PY - 2016/5/15
Y1 - 2016/5/15
N2 - One of the key challenges in developing quantum networks is to generate single photons with high brightness, purity, and long temporal coherence. Semiconductor quantum dots potentially satisfy these requirements; however, due to imperfections in the surrounding material, the coherence generally degrades with increasing excitation power yielding a broader emission spectrum. Here we overcome this power broadening regime and demonstrate an enhanced coherence at exciton saturation where the detected count rates are highest. We detect single-photon count rates of 460,000 counts per second under pulsed laser excitation while maintaining a single-photon purity greater than 99%. Importantly, the enhanced coherence is attained with quantum dots in ultraclean wurtzite InP nanowires, where the surrounding charge traps are filled by exciting above the wurtzite InP nanowire bandgap. By raising the excitation intensity, the number of possible charge configurations in the quantum dot environment is reduced, resulting in a narrower emission spectrum. Via Monte Carlo simulations we explain the observed narrowing of the emission spectrum with increasing power. Cooling down the sample to 300mK, we further enhance the single-photon coherence two-fold as compared to operation at 4.5K, resulting in a homogeneous coherence time, T2, of 1.2 ns, and two-photon interference visibility as high as 83% under strong temporal post-selection (~5% without temporal post-selection).
AB - One of the key challenges in developing quantum networks is to generate single photons with high brightness, purity, and long temporal coherence. Semiconductor quantum dots potentially satisfy these requirements; however, due to imperfections in the surrounding material, the coherence generally degrades with increasing excitation power yielding a broader emission spectrum. Here we overcome this power broadening regime and demonstrate an enhanced coherence at exciton saturation where the detected count rates are highest. We detect single-photon count rates of 460,000 counts per second under pulsed laser excitation while maintaining a single-photon purity greater than 99%. Importantly, the enhanced coherence is attained with quantum dots in ultraclean wurtzite InP nanowires, where the surrounding charge traps are filled by exciting above the wurtzite InP nanowire bandgap. By raising the excitation intensity, the number of possible charge configurations in the quantum dot environment is reduced, resulting in a narrower emission spectrum. Via Monte Carlo simulations we explain the observed narrowing of the emission spectrum with increasing power. Cooling down the sample to 300mK, we further enhance the single-photon coherence two-fold as compared to operation at 4.5K, resulting in a homogeneous coherence time, T2, of 1.2 ns, and two-photon interference visibility as high as 83% under strong temporal post-selection (~5% without temporal post-selection).
UR - http://journals.aps.org/prb/supplemental/10.1103/PhysRevB.93.195316/SUPPL_material_PRB.pdf
U2 - 10.1103/PhysRevB.93.195316
DO - 10.1103/PhysRevB.93.195316
M3 - Article
SN - 1098-0121
VL - 93
SP - 1
EP - 9
JO - Physical Review. B, Condensed matter and materials physics
JF - Physical Review. B, Condensed matter and materials physics
IS - 19
M1 - 195316
ER -