Out-of-plane transport in ZrSiS and ZrSiSe microstructures

Kent R. Shirer, Kimberly A. Modic, Tino Zimmerling, Maja D. Bachmann, Markus König, Philip J.W. Moll, Leslie Schoop, Andrew P. Mackenzie

Research output: Contribution to journalArticlepeer-review

Abstract

A recent class of topological nodal-line semimetals with the general formula MSiX (M = Zr, Hf and X = S, Se, Te) has attracted much experimental and theoretical interest due to their properties, particularly their large magnetoresistances and high carrier mobilities. The plateletlike nature of the MSiX crystals and their extremely low residual resistivities make measurements of the resistivity along the [001] direction extremely challenging. To accomplish such measurements, microstructures of single crystals were prepared using focused ion beam techniques. Microstructures prepared in this manner have very well-defined geometries and maintain their high crystal quality, verified by the observations of quantum oscillations. We present magnetoresistance and quantum oscillation data for currents applied along both [001] and [100] in ZrSiS and ZrSiSe, which are consistent with the nontrivial topology of the Dirac line-node, as determined by a measured π Berry phase. Surprisingly, we find that, despite the three dimensional nature of both the Fermi surfaces of ZrSiS and ZrSiSe, both the resistivity anisotropy under applied magnetic fields and the in-plane angular dependent magnetoresistance differ considerably between the two compounds. Finally, we discuss the role microstructuring can play in the study of these materials and our ability to make these microstructures free-standing.

Original languageEnglish
Article number101116
Number of pages7
JournalAPL Materials
Volume7
Issue number10
DOIs
Publication statusPublished - 17 Oct 2019

Fingerprint

Dive into the research topics of 'Out-of-plane transport in ZrSiS and ZrSiSe microstructures'. Together they form a unique fingerprint.

Cite this