On the Nature and Origin of the Cluster Glycoside Effect

S Dimick, SC Powell, SA McMahon, DN Moothoo, James Henderson Naismith, EJ Toone

Research output: Contribution to journalArticlepeer-review

208 Citations (Scopus)

Abstract

The inhibition of protein-carbohydrate interaction provides a powerful therapeutic strategy for the treatment of myriad human diseases. To date, application of such approaches have been frustrated by the inherent low affinity of carbohydrate ligands for their protein receptors. Because lectins typically exist in multimeric assemblies, a variety of polyvalent saccharide ligands have been prepared in the search for high affinity. The cluster glycoside effect, or the observation of high affinity derived from multivalency in oligosaccharide Ligands, apparently represents the best strategy for overcoming the "weak binding" problem. Here we report the synthesis of a series of multivalent dendritic saccharides and a biophysical evaluation of their interaction with the plant lectin concanavalin A. Although a 30-fold enhancement in affinity on a valence-corrected basis is observed by agglutination assay, calorimetric titration of soluble protein with a range of multivalent ligands reveals no enhancement in binding free energies. Rather, IC50 values from agglutination measurements correlate well with entropies of binding. This observation suggests that hemagglutination measures a phenomenon distinct from binding that is typified by a large favorable entropy and an unfavorable enthalpy: this process is almost certainly aggregation. Supporting this assertion, we report crystal structures of multivalent ligands cross-linking concanavalin A dimers. To the best of our knowledge, these structures are the first reported of their kind. Our results indicate that hemagglutination assays evaluate the ability of ligands to inhibit the formation of cross-linked lattices, a process only tangentially related to reversible ligand binding. Cluster glycoside effects observed in agglutination assays must, therefore, be viewed with caution. Such effects may or may not be relevant to the design of therapeutically useful saccharides.

Original languageEnglish
Pages (from-to)10286-10296
Number of pages11
JournalJournal of the American Chemical Society
Volume121
Publication statusPublished - 10 Nov 1999

Keywords

  • LEWIS-X ANALOGS
  • CARBOHYDRATE-BINDING
  • INFLUENZA-VIRUS
  • E-SELECTIN
  • LIGAND RECOGNITION
  • LECTIN
  • GLYCOBIOLOGY
  • THERMODYNAMICS
  • INHIBITION
  • PROTEINS

Fingerprint

Dive into the research topics of 'On the Nature and Origin of the Cluster Glycoside Effect'. Together they form a unique fingerprint.

Cite this