On Signatures of Twisted Magnetic Flux Tube Emergence

S. Vargas Dominguez, D. MacTaggart, L. Green, L. van Driel-Gesztelyi, A. W. Hood

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

Recent studies of NOAA active region 10953, by Okamoto et al. (Astrophys. J. Lett. 673, 215, 2008; Astrophys. J. 697, 913, 2009), have interpreted photospheric observations of changing widths of the polarities and reversal of the horizontal magnetic field component as signatures of the emergence of a twisted flux tube within the active region and along its internal polarity inversion line (PIL). A filament is observed along the PIL and the active region is assumed to have an arcade structure. To investigate this scenario, MacTaggart and Hood (Astrophys. J. Lett. 716, 219, 2010) constructed a dynamic flux emergence model of a twisted cylinder emerging into an overlying arcade. The photospheric signatures observed by Okamoto et al. (2008, 2009) are present in the model although their underlying physical mechanisms differ. The model also produces two additional signatures that can be verified by the observations. The first is an increase in the unsigned magnetic flux in the photosphere at either side of the PIL. The second is the behaviour of characteristic photospheric flow profiles associated with twisted flux tube emergence. We look for these two signatures in AR 10953 and find negative results for the emergence of a twisted flux tube along the PIL. Instead, we interpret the photospheric behaviour along the PIL to be indicative of photospheric magnetic cancellation driven by flows from the dominant sunspot. Although we argue against flux emergence within this particular region, the work demonstrates the important relationship between theory and observations for the successful discovery and interpretation of signatures of flux emergence.

Original languageEnglish
Pages (from-to)33-45
Number of pages13
JournalSolar Physics
Volume278
Issue number1
DOIs
Publication statusPublished - May 2012

Fingerprint

Dive into the research topics of 'On Signatures of Twisted Magnetic Flux Tube Emergence'. Together they form a unique fingerprint.

Cite this