On random presentations with fixed relator length

Calum Ashcroft, Colva Mary Roney-Dougal

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
2 Downloads (Pure)

Abstract

The standard (n, k, d) model of random groups is a model where the relators are chosen randomly from the set of cyclically reduced words of length k on an n-element generating set. Gromov’s density model of random groups considers the case where n is fixed, and k tends to infinity. We instead fix k, and let n tend to infinity. We prove that for all k ≥ 2 at density d > 1/2 a random group in this model is trivial or cyclic of order two, whilst for d < 1 such 2 a random group is infinite and hyperbolic. In addition we show that for d < 1/k such a random k group is free, and that this threshold is sharp. These extend known results for the triangular (k = 3) and square (k = 4) models of random groups.
Original languageEnglish
Number of pages15
JournalCommunications in Algebra
VolumeLatest Articles
Early online date19 Jan 2020
DOIs
Publication statusE-pub ahead of print - 19 Jan 2020

Keywords

  • Finitely-presented groups
  • Random presentations
  • Hyperbolic groups
  • Random graphs

Fingerprint

Dive into the research topics of 'On random presentations with fixed relator length'. Together they form a unique fingerprint.

Cite this