TY - JOUR
T1 - Numerical simulations study of a spin-1 Blume-Emery-Griffiths model on a square lattice
AU - Luque, L. M.
AU - Grigera, S. A.
AU - Albano, E.
N1 - This work was supported by CONICET (Argentina), and ANPCYT (Argentina) via grant PICT-2013-2004.
PY - 2019/3/18
Y1 - 2019/3/18
N2 - We use the Monte Carlo simulation technique to study the critical behavior of a three-state spin model, with bilinear and biquadratic nearest-neighbor interactions, known as the Blume-Emery-Griffiths model (BEG), in a square lattice. In order to characterize this model, we study the phase diagram, in which we identify three different phases: ferromagnetic, paramagnetic and quadrupolar, the later with one sublattice filled with spins and the other with vacancies. We perform our studies by using two algorithms: Metropolis update (MU) and Wang-Landau (WL). The critical scaling behavior of the model is complementary studied by applying results obtained by using both algorithms, while tricritical points and the tricritical scaling behavior is analyzed by means of WL measuring the joint density of states and using the method of field mixing in conjunction with finite-size scaling. Furthermore, motivated by the decoupling between spins observed within the quadrupolar phase, we further generalize the BEG model in order to study the behavior of the system by adding a next nearest neighbour (NNN) interaction between spins. We found that by increasing the strength of the (ferromagnetic) NNN interaction, a new ferromagnetic phase takes over that contains both quadrupolar and ferromagnetic order.
AB - We use the Monte Carlo simulation technique to study the critical behavior of a three-state spin model, with bilinear and biquadratic nearest-neighbor interactions, known as the Blume-Emery-Griffiths model (BEG), in a square lattice. In order to characterize this model, we study the phase diagram, in which we identify three different phases: ferromagnetic, paramagnetic and quadrupolar, the later with one sublattice filled with spins and the other with vacancies. We perform our studies by using two algorithms: Metropolis update (MU) and Wang-Landau (WL). The critical scaling behavior of the model is complementary studied by applying results obtained by using both algorithms, while tricritical points and the tricritical scaling behavior is analyzed by means of WL measuring the joint density of states and using the method of field mixing in conjunction with finite-size scaling. Furthermore, motivated by the decoupling between spins observed within the quadrupolar phase, we further generalize the BEG model in order to study the behavior of the system by adding a next nearest neighbour (NNN) interaction between spins. We found that by increasing the strength of the (ferromagnetic) NNN interaction, a new ferromagnetic phase takes over that contains both quadrupolar and ferromagnetic order.
KW - Classical Monte Carlo simulations
KW - Classical phase transitions
KW - Numerical simulations
KW - Phase diagrams
U2 - 10.1088/1742-5468/ab0817
DO - 10.1088/1742-5468/ab0817
M3 - Article
SN - 1742-5468
JO - Journal of Statistical Mechanics: Theory and Experiment
JF - Journal of Statistical Mechanics: Theory and Experiment
M1 - 033210
ER -