Abstract
SmBaMn2O5+δ (SBMO), a novel layered perovskite compound with samarium based material (Sm+3) as rare earth doped in A-site was synthesized and processed by using dry chemistry method (solid state solution). Structural characterization of SBMO has been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). While, thermal and electrochemical testing were done by using thermogravimetric analysis (TGA) and current voltage measurements. The Rietveld analysis of XRD data shows that SBMO was crystallized in the orthorhombic structure with the Pmmm space group. The surface morphology images showed a porous structure which indicates that this material can be used as a potential electrode in solid oxide fuel cells (SOFCs). TGA result showed the mass loss of 0.022% for SmBaMn2O5+δ which is very small and indicates that the material is very stable. DC conductivity and performance test were done at RT in air atmosphere. The performance tests have done at 800 °C and 750 °C and the maximum power density was found to be 0.4 W/cm2 at 800 °C.
Original language | English |
---|---|
Pages (from-to) | 129-132 |
Number of pages | 4 |
Journal | Materials Letters |
Volume | 204 |
Early online date | 7 Jun 2017 |
DOIs | |
Publication status | Published - 1 Oct 2017 |
Keywords
- Layered pervoskite
- Structural analysis
- Power density measurements
- SOFCs anode