Abstract
There is good evidence for a causal link between excessive sympathetic drive to the kidney and hypertension. We hypothesized that sympathetic regulation of tubular Na+ absorption may occur in the aldosterone-sensitive distal nephron, where the fine tuning of renal Na+ excretion takes place. Here, the appropriate regulation of transepithelial Na+ transport, mediated by the amiloride-sensitive epithelial Na+ channel (ENaC), is critical for blood pressure control. To explore a possible effect of the sympathetic transmitter norepinephrine on ENaC-mediated Na+ transport, we performed short-circuit current (Isc) measurements on confluent mCCDcl1 murine cortical collecting duct cells. Norepinephrine caused a complex Isc response with a sustained increase of amiloride-sensitive Isc by ∼44%. This effect was concentration dependent and mediated via basolateral α2-adrenoceptors. In cells pretreated with aldosterone, the stimulatory effect of norepinephrine was reduced. Finally, we demonstrated that noradrenergic nerve fibers are present in close proximity to ENaC-expressing cells in murine kidney slices. We conclude that the sustained stimulatory effect of locally elevated norepinephrine on ENaC-mediated Na+ absorption may contribute to the hypertensive effect of increased renal sympathetic activity.
Original language | English |
---|---|
Pages (from-to) | F450-F458 |
Journal | American Journal of Physiology - Renal Physiology |
Volume | 308 |
Issue number | 5 |
Early online date | 1 Mar 2015 |
DOIs | |
Publication status | Published - Mar 2015 |
Keywords
- Collecting duct
- Epithelial Na channel
- Epithelial sodium transport
- Norepinephrine
- Renal sympathetic innervation