Abstract
We demonstrate experimentally that noncollinear intrinsic spin-orbit magnetic fields can be realized in a curved carbon nanotube two-segment device. Each segment, analyzed in the quantum dot regime, shows near fourfold degenerate shell structure allowing for identification of the spin-orbit coupling and the angle between the two segments. Furthermore, we determine the four unique spin directions of the quantum states for specific shells and magnetic fields. This class of quantum dot systems is particularly interesting when combined with induced superconducting correlations as it may facilitate unconventional superconductivity and detection of Cooper pair entanglement. Our device comprises the necessary elements.
Original language | English |
---|---|
Article number | 276802 |
Number of pages | 5 |
Journal | Physical Review Letters |
Volume | 117 |
Issue number | 27 |
Early online date | 28 Dec 2016 |
DOIs | |
Publication status | Published - 30 Dec 2016 |
Fingerprint
Dive into the research topics of 'Noncollinear spin-orbit magnetic fields in a carbon nanotube double quantum dot'. Together they form a unique fingerprint.Profiles
Datasets
-
Data underpinning - Noncollinear Spin-Orbit Magnetic Fields in a Carbon Nanotube Double Quantum Dot
Hels, M. C. (Creator), Braunecker, B. H. (Creator), Grove-Rasmussen, K. (Creator) & Nygård, J. (Creator), University of St Andrews, 19 Jan 2017
DOI: 10.17630/df2aa84f-36f2-4c1f-b00c-34e102dcee1e
Dataset
File