Abstract
1 Previous studies show that linking acetylated glucosamine to S-nitroso-N-acetyl-D,L-penicillamine (SNAP) stabilizes the molecule and causes it to elicit unusually prolonged vasodilator effects in endothelium-denuded, isolated rat femoral arteries. Here we studied the propanoyl (SNPP; 3 carbon side-chain), valeryl (SNVP; 5C) and heptanoyl (SNHP; 7C) N-substituted analogues of SNAP (2C) to further investigate other molecular characteristics that might influence chemical stability and duration of vascular action of S-nitrosothiols.
2 Spectrophotometric analysis revealed that SNVP was the most stable analogue in solution. Decomposition of all four compounds was accelerated by Cu(II) and cysteine, and neocuproine, a specific Cu(I) chelator, slowed decomposition of SNHP. Generation of NO from the compounds was confirmed by electrochemical detection at 37 degrees C.
3 Bolus injections of SNAP (10 mu l; 10(-8)-10(-3) M) into the perfusate of precontracted, isolated rat femoral arteries taken from adult male Wistar rats (400-500 g), caused concentration-dependent, transient vasodilatations irrespective of endothelial integrity. Equivalent vasodilatations induced by SNVP and SNHP were transient in endothelium-intact vessels but failed to recover to pre-injection pressures at moderate and high concentrations (10(-6)-10(-3) M) in those denuded of endothelium. This sustained effect(>1 h) was most prevalent with SNHP and was largely reversed by the NO scavenger, haemoglobin.
4 We suggest that increased lipophilicity of SNAP analogues with longer sidechains facilitates their retention by endothelium-denuded vessels; subsequent slow decomposition within the tissue generates sufficient NO to cause prolonged vasodilatation. This is a potentially useful characteristic for targeting NO delivery to areas of endothelial damage.
Original language | English |
---|---|
Pages (from-to) | 639-648 |
Number of pages | 10 |
Journal | British Journal of Pharmacology |
Volume | 126 |
Publication status | Published - Feb 1999 |
Keywords
- nitric oxide
- S-nitrosothiols
- vasodilatation
- SNAP analogues
- ENDOTHELIUM-DEPENDENT RELAXATION
- VASCULAR SMOOTH-MUSCLE
- S-NITROSOTHIOLS
- BLOOD-PRESSURE
- L-ARGININE
- CORONARY-ARTERIES
- PLATELET-ADHESION
- INHIBITION
- CELLS
- NITROSOGLUTATHIONE