TY - JOUR
T1 - Morphology- and size-controlled synthesis of a metal-organic framework under ultrasound irradiation
T2 - an efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution
AU - Abazari, Reza
AU - reza Mahjoub, Ali
AU - Slawin, Alexandra M. Z.
AU - Carpenter-Warren, Cameron L.
N1 - Support of this investigation by Tarbiat Modares University is gratefully acknowledged.
PY - 2018/4
Y1 - 2018/4
N2 - In this study, we have reported a biocompatible metal-organic framework (MOF) with ultra-high surface area, which we have shown to have uses as both a cancer treatment delivery system and for environmental applications. Using a sonochemical approach, highly flexible organic H3BTCTB and ditopic 4,4́′-BPDC ligands, along with modulators of acetic acid and pyridine were combined to prepare a Zn(II)-based metal-organic framework, DUT-32, [Zn4O(BPDC)(BTCTB)4/3(DEF)39.7(H2O)11.3]. Powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FTIR) were used to characterize, the particle size, shape, and structure of the DUT-32. To show the effects of shape and size of DUT-32 micro/nano-structures on doxorubicin (DOX) drug release and amoxicillin (AMX) adsorption, time of sonication, initial reagent concentrations, irradiation frequency, and acetic acid to pyridine molar ratios were optimized. The drug-loaded DUT-32 was soaked in simulated body fluid (SBF) and the drug release ratio was monitored through release time to perform in vitro drug release test. A slow and sustained release was observed for DUT-32 micro/nano-structures, having a considerable drug loading capacity. At the pH values 7.4-4.5, various profiles of pH-responsive release were achieved. Also, the prepared DUT-32 micro/nano-structures are found to be biocompatible with PC3 (prostate cancer) and HeLa (cervical cancer) cell lines, when tested by MTT assay. Moreover, DUT-32 micro/nano-structures were studied to show AMX adsorption from aqueous solution. Finally, kinetic studies indicated that AMX adsorption and drug release of DOX via this MOF are of first-order kinetics.
AB - In this study, we have reported a biocompatible metal-organic framework (MOF) with ultra-high surface area, which we have shown to have uses as both a cancer treatment delivery system and for environmental applications. Using a sonochemical approach, highly flexible organic H3BTCTB and ditopic 4,4́′-BPDC ligands, along with modulators of acetic acid and pyridine were combined to prepare a Zn(II)-based metal-organic framework, DUT-32, [Zn4O(BPDC)(BTCTB)4/3(DEF)39.7(H2O)11.3]. Powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FTIR) were used to characterize, the particle size, shape, and structure of the DUT-32. To show the effects of shape and size of DUT-32 micro/nano-structures on doxorubicin (DOX) drug release and amoxicillin (AMX) adsorption, time of sonication, initial reagent concentrations, irradiation frequency, and acetic acid to pyridine molar ratios were optimized. The drug-loaded DUT-32 was soaked in simulated body fluid (SBF) and the drug release ratio was monitored through release time to perform in vitro drug release test. A slow and sustained release was observed for DUT-32 micro/nano-structures, having a considerable drug loading capacity. At the pH values 7.4-4.5, various profiles of pH-responsive release were achieved. Also, the prepared DUT-32 micro/nano-structures are found to be biocompatible with PC3 (prostate cancer) and HeLa (cervical cancer) cell lines, when tested by MTT assay. Moreover, DUT-32 micro/nano-structures were studied to show AMX adsorption from aqueous solution. Finally, kinetic studies indicated that AMX adsorption and drug release of DOX via this MOF are of first-order kinetics.
KW - Metal-organic framework
KW - Modulator
KW - Drug delivery
KW - pH responsive release
KW - Doxorubicin
KW - Amoxicillin
U2 - 10.1016/j.ultsonch.2017.12.032
DO - 10.1016/j.ultsonch.2017.12.032
M3 - Article
SN - 1350-4177
VL - 42
SP - 594
EP - 608
JO - Ultrasonics Sonochemistry
JF - Ultrasonics Sonochemistry
ER -