Projects per year
Abstract
Membrane forces shift the equilibria of mechanosensitive channels enabling them to convert mechanical cues into electrical signals. Molecular tools to stabilize and methods to capture their highly dynamic states are lacking. Cyclodextrins can mimic tension through the sequestering of lipids from membranes. Here we probe the conformational ensemble of MscS by EPR spectroscopy, the lipid environment with NMR, and function with electrophysiology under cyclodextrin-induced tension. We show the extent of MscS activation depends on the cyclodextrin-to-lipid ratio, and that lipids are depleted slower when MscS is present. This has implications in MscS’ activation kinetics when distinct membrane scaffolds such as nanodiscs or liposomes are used. We find MscS transits from closed to sub-conducting state(s) before it desensitizes, due to the lack of lipid availability in its vicinity required for closure. Our approach allows for monitoring tension-sensitive states in membrane proteins and screening molecules capable of inducing molecular tension in bilayers.
Original language | English |
---|---|
Journal | Structure |
Early online date | 22 Mar 2024 |
DOIs | |
Publication status | E-pub ahead of print - 22 Mar 2024 |
Keywords
- Cyclodextrin
- DEER
- Electrophysiology
- EPR
- Lipids
- Mechanosensitive ion channel
- Membrane
- MscS
- NMR
- PELDOR
Fingerprint
Dive into the research topics of 'Monitoring the conformational ensemble and lipid environment of a mechanosensitive channel under cyclodextrin-induced membrane tension'. Together they form a unique fingerprint.Projects
- 3 Finished
-
Enabling Shaped Pulse Capability: Enabling Shaped Pulse Capability for Superior Biological Structural Determination Using EPR Spectroscopy.
Lovett, J. E. (PI), Bode, B. E. (CoI), Penedo, C. (CoI), Pitt, S. J. (CoI), Schwarz-Linek, U. (CoI), Smith, G. M. (CoI), Watson, A. J. B. (CoI) & White, M. (CoI)
1/10/20 → 30/09/21
Project: Standard
-
Understanding sensitivity gains in pulse: Understanding sensitivity gains in pulse EPR on multimeric membrane proteins
Bode, B. E. (PI) & Pliotas, C. (CoI)
14/05/19 → 18/02/22
Project: Standard
-
Cryogen-free arbitrary waveform EPR: Cryogen-free arbitrary waveform EPR for structural Biology and Biophysics
Bode, B. E. (PI), Lovett, J. E. (CoI), Pliotas, C. (CoI), Schwarz-Linek, U. (CoI), Smith, G. M. (CoI), Stewart, A. J. (CoI) & White, M. (CoI)
1/05/18 → 30/04/19
Project: Standard
Datasets
-
Monitoring the Conformational Ensemble and Lipid Environment of a Mechanosensitive Channel Under Cyclodextrin-Induced Membrane Tension
Lane, B. (Creator), Ma, Y. (Creator), Yan, N. (Creator), Wang, B. (Creator), Ackermann, K. (Creator), Karamanos, T. (Creator), Bode, B. (Creator) & Pliotas, C. (Creator), University of Leeds, 2024
DOI: 10.5518/1267
Dataset