Abstract
Bar-headed geese (Anser indicus) fly at up to 9,000 m elevation during their migration over the Himalayas, sustaining high metabolic rates in the severe hypoxia at these altitudes. We investigated the evolution of cardiac energy metabolism and O-2 transport in this species to better understand the molecular and physiological mechanisms of high-altitude adaptation. Compared with low-altitude geese (pink-footed geese and barnacle geese), bar-headed geese had larger lungs and higher capillary densities in the left ventricle of the heart, both of which should improve O-2 diffusion during hypoxia. Although myoglobin abundance and the activities of many metabolic enzymes (carnitine palmitoyltransferase, citrate synthase, 3-hydroxyacyl-coA dehydrogenase, lactate dehydrogenase, and pyruvate kinase) showed only minor variation between species, bar-headed geese had a striking alteration in the kinetics of cytochrome c oxidase (COX), the heteromeric enzyme that catalyzes O-2 reduction in oxidative phosphorylation. This was reflected by a lower maximum catalytic activity and a higher affinity for reduced cytochrome c. There were small differences between species in messenger RNA and protein expression of COX subunits 3 and 4, but these were inconsistent with the divergence in enzyme kinetics. However, the COX3 gene of bar-headed geese contained a nonsynonymous substitution at a site that is otherwise conserved across vertebrates and resulted in a major functional change of amino acid class (Trp-116 -> Arg). This mutation was predicted by structural modeling to alter the interaction between COX3 and COX1. Adaptations in mitochondrial enzyme kinetics and O-2 transport capacity may therefore contribute to the exceptional ability of bar-headed geese to fly high.
Original language | English |
---|---|
Pages (from-to) | 351-363 |
Number of pages | 13 |
Journal | Molecular Biology and Evolution |
Volume | 28 |
Issue number | 1 |
Early online date | 4 Aug 2010 |
DOIs | |
Publication status | Published - Jan 2011 |
Keywords
- exercise performance
- phylogenetically independent contrasts
- protein homology modeling
- birds
- avian
- GEESE ANSER-INDICUS
- HEMOGLOBIN GENES
- GUINEA-PIGS
- MUSCLE
- MECHANISM
- SUBUNIT
- RESPIRATION
- GRADIENT
- HYPOXIA
- FLIGHT