TY - JOUR
T1 - Modified newtonian dynamics
T2 - Success and problems on globular cluster scale
AU - Zhao, Hongsheng
PY - 2005/1/1
Y1 - 2005/1/1
N2 - Many past attempts to kill MOND have only strengthened the theory. Better data on galaxy velocity curves clearly favor MOND (without fine-tuning) over cold dark matter. The usual critism on the incompleteness of classical MOND has spurred a Modified Relativity (MR) by Bekenstein. After outlining cosmology and lensing in MOND, we review MOND on small scales. We point out some potential problems of MOND in two-body relaxation and tidal truncation. We argue that the tidal field in any MOND-like gravity theory predicts that the Roche lobe sizes of a binary system are simply proportional to the binary baryonic mass ratio to the power 1/3. An immediate application of this result is that the tidal field and tidal truncation radii of million-star globular clusters and million-star dwarf galaxies (e.g., the Milky Way satellites NGC2419 and Carina) would be very similar because of the one-to-one relation between gravity and baryon distribution. This prediction appears, however, inconsistent with the fact that all globulars are truncated to much smaller sizes than all dwarf galaxies. Whether tide is uniquely determined by baryons can also be used to falsify any MOND-like gravity theory, whether classical or relativistic.
AB - Many past attempts to kill MOND have only strengthened the theory. Better data on galaxy velocity curves clearly favor MOND (without fine-tuning) over cold dark matter. The usual critism on the incompleteness of classical MOND has spurred a Modified Relativity (MR) by Bekenstein. After outlining cosmology and lensing in MOND, we review MOND on small scales. We point out some potential problems of MOND in two-body relaxation and tidal truncation. We argue that the tidal field in any MOND-like gravity theory predicts that the Roche lobe sizes of a binary system are simply proportional to the binary baryonic mass ratio to the power 1/3. An immediate application of this result is that the tidal field and tidal truncation radii of million-star globular clusters and million-star dwarf galaxies (e.g., the Milky Way satellites NGC2419 and Carina) would be very similar because of the one-to-one relation between gravity and baryon distribution. This prediction appears, however, inconsistent with the fact that all globulars are truncated to much smaller sizes than all dwarf galaxies. Whether tide is uniquely determined by baryons can also be used to falsify any MOND-like gravity theory, whether classical or relativistic.
KW - Dark matter
UR - http://www.scopus.com/inward/record.url?scp=63549129926&partnerID=8YFLogxK
U2 - 10.1017/S174392130500373X
DO - 10.1017/S174392130500373X
M3 - Article
AN - SCOPUS:63549129926
SN - 1743-9213
VL - 1
SP - 189
EP - 197
JO - Proceedings of the International Astronomical Union
JF - Proceedings of the International Astronomical Union
IS - C198
ER -