TY - JOUR
T1 - Modelling the cosmic spectral energy distribution and extragalactic background light over all time
AU - Andrews, S. K.
AU - Driver, S. P.
AU - Davies, L. J. M.
AU - Lagos, C. d. P.
AU - Robotham, A. S. G.
N1 - SKA is supported by the Australian Governments Department of Industry Australian Postgraduate Award (APA) and a travel grant from the Convocation of UWA Graduates.
PY - 2018/2
Y1 - 2018/2
N2 - We present a phenomological model of the cosmic spectral energy distribution (CSED) and the integrated galactic light (IGL) over all cosmic time. This model, based on an earlier model by Driver et al., attributes the cosmic star formation history (CSFH) to two processes - first, chaotic clump accretion and majormergers, resulting in the early-time formation of bulges and secondly, cold gas accretion, resulting in late-time disc formation. Under the assumption of a Universal Chabrier initial mass function, we combine the Bruzual & Charlot stellar libraries, the Charlot & Fall dust attenuation prescription and template spectra for emission by dust and active galactic nuclei to predict the CSED - pre- and post-dust attenuation - and the IGL throughout cosmic time. The phenomological model, as constructed, adopts a number of basic axioms and empirical results and has minimal free parameters. We compare the model output, as well as predictions from the semi-analytic model GALFORM to recent estimates of the CSED out to z = 1. By construction, our empirical model reproduces the full energy output of the Universe from the ultraviolet to the far-infrared extremely well. We use the model to derive predictions of the stellar and dust mass densities, again finding good agreement. We find that GALFORM predicts the CSED for z < 0.3 in good agreement with the observations. This agreement becomes increasingly poor towards z = 1, when the model CSED is ~50 per cent fainter. The latter is consistent with the model underpredicting the CSFH. As a consequence, GALFORM predicts a ~30 per cent fainter IGL.
AB - We present a phenomological model of the cosmic spectral energy distribution (CSED) and the integrated galactic light (IGL) over all cosmic time. This model, based on an earlier model by Driver et al., attributes the cosmic star formation history (CSFH) to two processes - first, chaotic clump accretion and majormergers, resulting in the early-time formation of bulges and secondly, cold gas accretion, resulting in late-time disc formation. Under the assumption of a Universal Chabrier initial mass function, we combine the Bruzual & Charlot stellar libraries, the Charlot & Fall dust attenuation prescription and template spectra for emission by dust and active galactic nuclei to predict the CSED - pre- and post-dust attenuation - and the IGL throughout cosmic time. The phenomological model, as constructed, adopts a number of basic axioms and empirical results and has minimal free parameters. We compare the model output, as well as predictions from the semi-analytic model GALFORM to recent estimates of the CSED out to z = 1. By construction, our empirical model reproduces the full energy output of the Universe from the ultraviolet to the far-infrared extremely well. We use the model to derive predictions of the stellar and dust mass densities, again finding good agreement. We find that GALFORM predicts the CSED for z < 0.3 in good agreement with the observations. This agreement becomes increasingly poor towards z = 1, when the model CSED is ~50 per cent fainter. The latter is consistent with the model underpredicting the CSFH. As a consequence, GALFORM predicts a ~30 per cent fainter IGL.
KW - Galaxies: evolution
KW - Galaxies: general
KW - Cosmic background radiation
KW - Cosmology: observations
U2 - 10.1093/mnras/stx2843
DO - 10.1093/mnras/stx2843
M3 - Article
AN - SCOPUS:85037636277
SN - 0035-8711
VL - 474
SP - 898
EP - 916
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 11
ER -