Abstract
We report low-temperature thermal expansion measurements on the bilayer ruthenate Sr3Ru2O7 as a function of magnetic field applied perpendicular to the ruthenium-oxide planes. The field dependence of the c-axis expansion coefficient indicates the accumulation of entropy close to 8 T, related to an underlying quantum critical point. The latter is masked by two first-order metamagnetic transitions which bound a regime of enhanced entropy. Outside this region the singular thermal expansion behavior is compatible with the predictions of the itinerant theory for a two-dimensional metamagnetic quantum critical end point.
Original language | English |
---|---|
Number of pages | 4 |
Journal | Physical Review Letters |
Volume | 96 |
DOIs | |
Publication status | Published - 7 Apr 2006 |