TY - JOUR
T1 - Maternal response to environmental unpredictability
AU - Barbosa, Miguel
AU - Lopes, Isabel
AU - Venâncio, Catia
AU - Janeiro Silva, Maria Joao
AU - Morrissey, Michael Blair
AU - Soares, Amadeu M.V.M.
N1 - This study was funded by a postdoctoral fellowship to MB (SFRH/BPD/82259/2011) and with a “Bolsista CAPES/BRASIL,” (Project A058/2013) to AMVMS.
PY - 2015
Y1 - 2015
N2 - Mothers are expected to use environmental cues to modify maternal investment to optimize their fitness. However, when the environment varies unpredictably, cues may not be an accurate proxy of future conditions. Under such circumstances, selection favors a diversifying maternal investment strategy. While there is evidence that the environment is becoming more uncertain, the extent to which mothers are able to respond to this unpredictability is generally unknown. In this study, we test the hypothesis that Daphnia magna increase the variance in maternal investment in response to unpredictable variation in temperature consistent with global change predictions. We detected significant variability across temperature treatments in brood size, neonate size at birth, and time between broods. The estimated variability within-brood size was higher (albeit not statistically significant) in mothers reared in unpredictable temperature conditions. We also detected a cross-generational effect with the temperature history of mothers modulating the phenotypic response of F1's. Notably, our results diverged from the prediction that increased variability poses a greater risk to organisms than changes in mean temperature. Increased unpredictability in temperature had negligible effects on fitness-correlated traits. Mothers in the unpredictable treatment, survived as long, and produced as many F1's during lifetime as those produced in the most fecund treatment. Further, increased unpredictability in temperature did not affect the probability of survival of F1's. Collectively, we provide evidence that daphnia respond effectively to thermal unpredictability. But rather than increasing the variance in maternal investment, daphnia respond to uncertainty by being a jack of all temperatures, master of none. Importantly, our study highlights the essential need to examine changes in variances rather than merely on means, when investigating maternal responses.
AB - Mothers are expected to use environmental cues to modify maternal investment to optimize their fitness. However, when the environment varies unpredictably, cues may not be an accurate proxy of future conditions. Under such circumstances, selection favors a diversifying maternal investment strategy. While there is evidence that the environment is becoming more uncertain, the extent to which mothers are able to respond to this unpredictability is generally unknown. In this study, we test the hypothesis that Daphnia magna increase the variance in maternal investment in response to unpredictable variation in temperature consistent with global change predictions. We detected significant variability across temperature treatments in brood size, neonate size at birth, and time between broods. The estimated variability within-brood size was higher (albeit not statistically significant) in mothers reared in unpredictable temperature conditions. We also detected a cross-generational effect with the temperature history of mothers modulating the phenotypic response of F1's. Notably, our results diverged from the prediction that increased variability poses a greater risk to organisms than changes in mean temperature. Increased unpredictability in temperature had negligible effects on fitness-correlated traits. Mothers in the unpredictable treatment, survived as long, and produced as many F1's during lifetime as those produced in the most fecund treatment. Further, increased unpredictability in temperature did not affect the probability of survival of F1's. Collectively, we provide evidence that daphnia respond effectively to thermal unpredictability. But rather than increasing the variance in maternal investment, daphnia respond to uncertainty by being a jack of all temperatures, master of none. Importantly, our study highlights the essential need to examine changes in variances rather than merely on means, when investigating maternal responses.
KW - Fitness
KW - Jack of all trades
KW - Maternal Investment
KW - Trans-generational effects
KW - Unpredictability
KW - Variance
UR - http://onlinelibrary.wiley.com/doi/10.1002/ece3.1723/suppinfo
U2 - 10.1002/ece3.1723
DO - 10.1002/ece3.1723
M3 - Article
SN - 2045-7758
VL - Early view
JO - Ecology and Evolution
JF - Ecology and Evolution
ER -