TY - JOUR
T1 - Mapping the spectral index of Cassiopeia A
T2 - evidence for flattening from radio to infrared
AU - Domček, V
AU - Vink, J
AU - Hernández Santisteban, J V
AU - DeLaney, T
AU - Zhou, P
N1 - Funding: The work of VD is supported by a grant from the NWO graduate programme/GRAPPA-PhD programme. JVHS acknowledges support from the STFC grant ST/R000824/1.
PY - 2021/3
Y1 - 2021/3
N2 - Synchrotron radiation from supernova remnants is caused by electrons accelerated through diffusive shock acceleration (DSA). The standard DSA theory predicts an electron spectral index of p = 2, corresponding to a radio spectral index of α = −0.5. An extension of DSA theory predicts that the accelerated particles change the shock structure, resulting in a spectrum that is steeper than p > 2 (α < −0.5) at low energies and flattens with energy. For Cassiopeia A, a synchrotron spectral flattening was previously reported for a small part of the remnant in the mid-infrared regime. Here, we present new measurements for spectral flattening using archival radio (4.72 GHz) and mid-infrared (3.6 μm) data, and we produce a complete spectral index map to investigate the spatial variations within the remnant. We compare this to measurements of the radio spectral index from L-band (1.285 GHz) and C-band (4.64 GHz) maps. Our result shows overall spectral flattening across the remnant (αR-IR ∼ −0.5 to −0.7), to be compared with the radio spectral index of αR = −0.77. The flattest values coincide with the locations of most recent particle acceleration. In addition to overall flattening, we detect a relatively steeper region in the south-east of the remnant (αR-IR ∼ −0.67). We explore whether these locally steeper spectra could be the result of synchrotron cooling, which provides constraints on the local magnetic field strengths and the age of the plasma, suggesting B ≲ 2 mG for an age of 100 yr, and even B ≲ 1 mG using the age of Cas A, in agreement with other estimates.
AB - Synchrotron radiation from supernova remnants is caused by electrons accelerated through diffusive shock acceleration (DSA). The standard DSA theory predicts an electron spectral index of p = 2, corresponding to a radio spectral index of α = −0.5. An extension of DSA theory predicts that the accelerated particles change the shock structure, resulting in a spectrum that is steeper than p > 2 (α < −0.5) at low energies and flattens with energy. For Cassiopeia A, a synchrotron spectral flattening was previously reported for a small part of the remnant in the mid-infrared regime. Here, we present new measurements for spectral flattening using archival radio (4.72 GHz) and mid-infrared (3.6 μm) data, and we produce a complete spectral index map to investigate the spatial variations within the remnant. We compare this to measurements of the radio spectral index from L-band (1.285 GHz) and C-band (4.64 GHz) maps. Our result shows overall spectral flattening across the remnant (αR-IR ∼ −0.5 to −0.7), to be compared with the radio spectral index of αR = −0.77. The flattest values coincide with the locations of most recent particle acceleration. In addition to overall flattening, we detect a relatively steeper region in the south-east of the remnant (αR-IR ∼ −0.67). We explore whether these locally steeper spectra could be the result of synchrotron cooling, which provides constraints on the local magnetic field strengths and the age of the plasma, suggesting B ≲ 2 mG for an age of 100 yr, and even B ≲ 1 mG using the age of Cas A, in agreement with other estimates.
KW - Acceleration of particles
KW - Radiation mechanisms: non-thermal
KW - ISM: individual objects: Cassiopeia A
KW - ISM: supernova remnants
U2 - 10.1093/mnras/staa3896
DO - 10.1093/mnras/staa3896
M3 - Article
SN - 0035-8711
VL - 502
SP - 1026
EP - 1040
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 1
ER -