MapMySmoke: feasibility of a new quit cigarette smoking mobile phone application using integrated geo-positioning technology, and motivational messaging within a primary care setting

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)
1 Downloads (Pure)


Background:  Approximately 11,000 people die in Scotland each year as a result of smoking-related causes. Quitting smoking is relatively easy; maintaining a quit attempt is a very difficult task with success rates for unaided quit attempts stubbornly remaining in the single digits. Pharmaceutical treatment can improve these rates by lowering the overall reward factor of nicotine. However, these and related nicotine replacement therapies do not operate on, or address, the spatial and contextual aspects of smoking behaviour. With the ubiquity of smartphones that can log spatial, quantitative and qualitative data related to smoking behaviour, there exists a person-centred clinical opportunity to support smokers attempting to quit by first understanding their smoking behaviour and subsequently sending them dynamic messages to encourage health behaviour change within a situational context.
Methods:  We have built a smartphone app—MapMySmoke—that works on Android and iOS platforms. The deployment of this app within a clinical National Health Service (NHS) setting has two distinct phases: (1) a 2-week logging phase where pre-quit patients log all of their smoking and craving events; and (2) a post-quit phase where users receive dynamic support messages and can continue to log craving events, and should they occur, relapse events. Following the initial logging phase, patients consult with their general practitioner (GP) or healthcare provider to review their smoking patterns and to outline a precise, individualised quit attempt plan. Our feasibility study consists of assessment of an initial app version during and after use by eight patients recruited from an NHS Fife GP practice. In addition to evaluation of the app as a potential smoking cessation aid, we have assessed the user experience, technological requirements and security of the data flow.
Results:  In an initial feasibility study, we have deployed the app for a small number of patients within one GP practice in NHS Fife. We recruited eight patients within one surgery, four of whom actively logged information about their smoking behaviour. Initial feedback was very positive, and users indicated a willingness to log their craving and smoking events. In addition, two out of three patients who completed follow-up interviews noted that the app helped them reduce the number of cigarettes they smoked per day, while the third indicated that it had helped them quit. The study highlighted the use of pushed notifications as a potential technology for maintaining quit attempts, and the security of collection of data was audited. These initial results influenced the design of a planned second larger study, comprised of 100 patients, the primary objectives of which are to use statistical modelling to identify times and places of probable switches into smoking states, and to target these times with dynamic health behaviour messaging.
Conclusions:  While the health benefits of quitting smoking are unequivocal, such behaviour change is very difficult to achieve. Many factors are likely to contribute to maintaining smoking behaviour, yet the precise role of cues derived from the spatial environment remains unclear. The rise of smartphones, therefore, allows clinicians the opportunity to better understand the spatial aspects of smoking behaviour and affords them the opportunity to push targeted individualised health support messages at vulnerable times and places.
Original languageEnglish
Article number19
Number of pages10
JournalPilot and Feasibility Studies
Publication statusPublished - 14 Jul 2017


  • Smoking cessation
  • Smartphone
  • App
  • Hidden Markov models
  • Geospatial
  • INLA


Dive into the research topics of 'MapMySmoke: feasibility of a new quit cigarette smoking mobile phone application using integrated geo-positioning technology, and motivational messaging within a primary care setting'. Together they form a unique fingerprint.

Cite this