Magnifying networks for histopathological images with billions of pixels

Neofytos Dimitriou*, Oggie Arandelovic, David James Harrison

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Amongst the other benefits conferred by the shift from traditional to digital pathology is the potential to use machine learning for diagnosis, prognosis, and personalization. A major challenge in the realization of this potential emerges from the extremely large size of digitized images, which are often in excess of 100,000 × 100,000 pixels. In this paper, we tackle this challenge head-on by diverging from the existing approaches in the literature—which rely on the splitting of the original images into small patches—and introducing magnifying networks (MagNets). By using an attention mechanism, MagNets identify the regions of the gigapixel image that benefit from an analysis on a finer scale. This process is repeated, resulting in an attention-driven coarse-to-fine analysis of only a small portion of the information contained in the original whole-slide images. Importantly, this is achieved using minimal ground truth annotation, namely, using only global, slide-level labels. The results from our tests on the publicly available Camelyon16 and Camelyon17 datasets demonstrate the effectiveness of MagNets—as well as the proposed optimization framework—in the task of whole-slide image classification. Importantly, MagNets process at least five times fewer patches from each whole-slide image than any of the existing end-to-end approaches.
Original languageEnglish
Article number524
Number of pages21
Issue number5
Publication statusPublished - 1 Mar 2024


  • Histology
  • Histopathology
  • Deep learning
  • Whole slide image
  • Digital pathology
  • Gigapixel images
  • Tissue heterogeneity
  • Precision medicine


Dive into the research topics of 'Magnifying networks for histopathological images with billions of pixels'. Together they form a unique fingerprint.

Cite this