LSCM based SOFC a suitable system for direct propane operation

David M. Bastidas*, John T S Irvine

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In this study, we report the suitability of La0.75Sr0.25Cr0.5Mn0.5O3-? (LSCM) perovskite anode for propane fuelled SOFCs. Different methods of internal reforming of propane have been studied. The anode material has been prepared by sol-gel method; they were optimized to obtain a single phase with high purity and crystallinity. Microstructural studies were carried out by SEM and the microstructure was related to the solid oxide fuel cell electrochemical properties. A slurry of LSCM/YSZ was deposited onto fully dense YSZ electrolyte. Fuel cell tests were performed for the fuel cell using different fuel mixtures such as steam reforming of C3H8 and a mixture of propane with oxygen at 900°C temperature. The polarization resistances are about 0.5 ?cm-2 under operating conditions. Different steam and POX reforming conditions were studied varying ratios of propane to steam and oxygen, according to viable operation conditions to avoid coke formation. Moreover polarization studies have been carried out under LPG (liquefied petroleum gas) atmosphere demonstrating the suitability of the LSCM anode to run under such fuel.

Original languageEnglish
Title of host publicationProceedings of the 1st European Fuel Cell Technology and Applications Conference 2005, EFC2005 - Book of Abstracts
Number of pages1
Volume2005
Publication statusPublished - 1 Dec 2005
Event1st European Fuel Cell Technology and Applications Conference 2005, EFC2005 - Rome, Italy
Duration: 14 Dec 200516 Dec 2005

Conference

Conference1st European Fuel Cell Technology and Applications Conference 2005, EFC2005
Country/TerritoryItaly
CityRome
Period14/12/0516/12/05

Fingerprint

Dive into the research topics of 'LSCM based SOFC a suitable system for direct propane operation'. Together they form a unique fingerprint.

Cite this