Projects per year
Abstract
We demonstrate passive optical sorting of cell populations in the absence of any externally driven fluid flow. Specifically, we report the movement of erythrocytes and lymphocytes in an optical landscape, consisting of a circularly symmetric light pattern created by a Bessel light beam. These distinct cell populations move, spontaneously and differentially, across the underlying periodic optical landscape. Thus, we were able to separate lymphocytes from a mixed population of cells containing erythrocytes and then collect the lymphocytes in a microcapillary reservoir. We also demonstrate an enhanced form of this separation that exploits the polarizability of silica microspheres by attaching spheres coated with antibodies to cell surface markers to a subpopulation of lymphocytes. These techniques may be applied using standard laboratory apparatus. (c) 2005 American Institute of Physics.
Original language | English |
---|---|
Pages (from-to) | 123901 |
Number of pages | 3 |
Journal | Applied Physics Letters |
Volume | 87 |
Issue number | 12 |
DOIs | |
Publication status | Published - 19 Sept 2005 |
Keywords
- PARTICLES
- FORCES
- TRAP
- BEAM
Fingerprint
Dive into the research topics of 'Light-induced cell separation in a tailored optical landscape'. Together they form a unique fingerprint.Projects
- 1 Finished
-
CELLULAR & MOLECULAR PHOTONICS: Cellular and Molecular Photonics
Dholakia, K. (PI), Campbell, P. A. (CoI), Gurtner, D. M. (CoI), Krauss, T. F. (CoI) & Samuel, I. D. W. (CoI)
1/07/04 → 30/06/08
Project: Standard