Light activated escape circuits: a behavior and neurophysiology lab module using Drosophila optogenetics

Joshua S. Titlow, Bruce R. Johnson, Stefan R. Pulver

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
4 Downloads (Pure)

Abstract

The neural networks that control escape from predators often show very clear relationships between defined sensory inputs and stereotyped motor outputs. This feature provides unique opportunities for researchers, but it also provides novel opportunities for neuroscience educators. Here we introduce new teaching modules using adult Drosophila that have been engineered to express csChrimson, a red-light sensitive channelrhodopsin, in specific sets of neurons and muscles mediating visually guided escape behaviors. This lab module consists of both behavior and electrophysiology experiments that explore the neural basis of flight escape. Three preparations are described that demonstrate photo-activation of the giant fiber circuit and how to quantify these behaviors. One of the preparations is then used to acquire intracellular electrophysiology recordings from different flight muscles. The diversity of action potential waveforms and firing frequencies observed in the flight muscles make this a rich preparation to study the ionic basic of cellular excitability. By activating different cells within the giant fiber pathway we also demonstrate principles of synaptic transmission and neural circuits. Beyond conveying core neurobiological concepts it is also expected that using these cutting edge techniques will enhance student motivation and attitudes towards biological research. Data collected from students and educators who have been involved in development of the module are presented to support this notion.
Original languageEnglish
Pages (from-to)A166–A173
JournalJournal of Undergraduate Neuroscience Education
Volume13
Issue number3
Publication statusPublished - 7 Jul 2015

Keywords

  • Optogenetics
  • Drosophila
  • Giant fiber escape
  • Flight muscle
  • Electrophysiology
  • Neuroethology

Fingerprint

Dive into the research topics of 'Light activated escape circuits: a behavior and neurophysiology lab module using Drosophila optogenetics'. Together they form a unique fingerprint.

Cite this