Projects per year
Abstract
The development of multielectron redox-active cathode materials is a top priority for achieving high energy density with long cycle life in the next-generation secondary battery applications. Triggering anion redox activity is regarded as a promising strategy to enhance the energy density of polyanionic cathodes for Li/Na-ion batteries. Herein, K2Fe(C2O4)2 is shown to be a promising new cathode material that combines metal redox activity with oxalate anion (C2O42–) redox. This compound reveals specific discharge capacities of 116 and 60 mAh g–1 for sodium-ion batterie (NIB) and lithium-ion batterie (LIB) cathode applications, respectively, at a rate of 10 mA g–1, with excellent cycling stability. The experimental results are complemented by density functional theory (DFT) calculations of the average atomic charges.
Original language | English |
---|---|
Pages (from-to) | 2600-2611 |
Number of pages | 12 |
Journal | Chemistry of Materials |
Volume | 35 |
Issue number | 6 |
Early online date | 13 Mar 2023 |
DOIs | |
Publication status | Published - 28 Mar 2023 |
Fingerprint
Dive into the research topics of 'K2Fe(C2O4)2: an oxalate cathode for Li/Na ion batteries exhibiting a combination of multielectron cation and anion redox'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Light Element Analysis Facility (LEAF): Light Element Analysis Facility (LEAF)
Irvine, J. T. S. (PI), Baker, R. (CoI) & Miller, D. N. (CoI)
5/04/20 → 4/04/23
Project: Standard
-
Electon Microscopy: Electon Microscopy for the characterisation and manipulation of advanced function materials and their interfaces at the nanoscale
Irvine, J. T. S. (PI), Baker, R. (CoI) & Zhou, W. (CoI)
1/04/18 → 2/09/20
Project: Standard