Key targets for multi-target ligands designed to combat neurodegeneration

Rona R. Ramsay, Magdalena Majekova, Milagros Medina, Massimo Valoti

Research output: Contribution to journalReview articlepeer-review

39 Citations (Scopus)
1 Downloads (Pure)

Abstract

Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to ‘dirty drugs’ for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson’s Disease’s (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are simply symptomatic treatment so if new drugs are to prevent degeneration rather than compensate for loss of neurotransmitters, then oxidative stress and mitochondrial events must also be targeted. MAO inhibitors can protect neurons from apoptosis by mechanisms unrelated to enzyme inhibition. Understanding the involvement of MAO and other proteins in the induction and regulation of the apoptosis in mitochondria will aid progress towards strategies to prevent the loss of neurons. In general, the oxidative stress observed both in PD and AD indicate that antioxidant properties are a desirable part of MTDL molecules. After two or more properties are incorporated into one molecule, the passage from a lead compound to a therapeutic tool is strictly linked to its pharmacokinetic and toxicity. In this context the interaction of any new molecules with cytochrome P450 and other xenobiotic metabolic processes is a crucial point. The present review covers the biochemistry of enzymes targeted in the design of drugs against neurodegeneration and the cytochrome P450-dependent metabolism of MTDLs.
Original languageEnglish
Article number375
JournalFrontiers in Neuroscience
Volume10
DOIs
Publication statusPublished - 22 Aug 2016

Keywords

  • Multi target designed ligands
  • Mitochondria
  • Oxidative stress
  • Monoamine oxidase
  • Cytochrome P450
  • Neurodegeneration

Fingerprint

Dive into the research topics of 'Key targets for multi-target ligands designed to combat neurodegeneration'. Together they form a unique fingerprint.

Cite this