JWST-TST DREAMS: quartz clouds in the atmosphere of WASP-17b

David Grant*, Nikole K. Lewis, Hannah R. Wakeford, Natasha E. Batalha, Ana Glidden, Jayesh Goyal, Elijah Mullens, Ryan J. MacDonald, Erin M. May, Sara Seager, Kevin B. Stevenson, Jeff A. Valenti, Channon Visscher, Lili Alderson, Natalie H. Allen, Caleb I. Cañas, Knicole Colón, Mark Clampin, Néstor Espinoza, Amélie GressierJingcheng Huang, Zifan Lin, Douglas Long, Dana R. Louie, Maria Peña-Guerrero, Sukrit Ranjan, Kristin S. Sotzen, Daniel Valentine, Jay Anderson, William O. Balmer, Andrea Bellini, Kielan K. W. Hoch, Jens Kammerer, Mattia Libralato, C. Matt Mountain, Marshall D. Perrin, Laurent Pueyo, Emily Rickman, Isabel Rebollido, Sangmo Tony Sohn, Roeland P. van der Marel, Laura L. Watkins

*Corresponding author for this work

Research output: Contribution to journalLetterpeer-review

Abstract

Clouds are prevalent in many of the exoplanet atmospheres that have been observed to date. For transiting exoplanets, we know if clouds are present because they mute spectral features and cause wavelength-dependent scattering. While the exact composition of these clouds is largely unknown, this information is vital to understanding the chemistry and energy budget of planetary atmospheres. In this work, we observe one transit of the hot Jupiter WASP-17b with JWST's MIRI LRS and generate a transmission spectrum from 5-12 μm. These wavelengths allow us to probe absorption due to the vibrational modes of various predicted cloud species. Our transmission spectrum shows additional opacity centered at 8.6 μm, and detailed atmospheric modeling and retrievals identify this feature as SiO2(s) (quartz) clouds. The SiO2(s) clouds model is preferred at 3.5-4.2σ versus a cloud-free model and at 2.6σ versus a generic aerosol prescription. We find the SiO2(s) clouds are comprised of small ~0.01 μm particles, which extend to high altitudes in the atmosphere. The atmosphere also shows a depletion of H2O, a finding consistent with the formation of high-temperature aerosols from oxygen-rich species. This work is part of a series of studies by our JWST Telescope Scientist Team (JWST-TST), in which we will use Guaranteed Time Observations to perform Deep Reconnaissance of Exoplanet Atmospheres through Multi-instrument Spectroscopy (DREAMS).
Original languageEnglish
Article numberL32
Number of pages15
JournalAstrophysical Journal Letters
Volume956
Issue number2
Early online date16 Oct 2023
DOIs
Publication statusPublished - 20 Oct 2023

Fingerprint

Dive into the research topics of 'JWST-TST DREAMS: quartz clouds in the atmosphere of WASP-17b'. Together they form a unique fingerprint.

Cite this