TY - JOUR
T1 - Silbido profundo
T2 - an open source package for the use of deep learning to detect odontocete whistles
AU - Conant, Peter C.
AU - Li, Pu
AU - Liu, Xiaobai
AU - Klinck, Holger
AU - Fleishman, Erica
AU - Gillespie, Douglas
AU - Nosal, Eva-Marie
AU - Roch, Marie A.
N1 - Funding: The authors wish to thank Dr. Michael Weise of the Office of Naval Research (N00014-17-1-2867, N00014-17-1-2567) for supporting this project. We also thank Anu Kumar and Mandy Shoemaker of U.S. Navy Living Marine Resources for supporting development of the data management tools used in this work (N3943020C2202).
PY - 2022/12/27
Y1 - 2022/12/27
N2 - This work presents an open-source matlab software package for exploiting recent advances in extracting tonal signals from large acoustic data sets. A whistle extraction algorithm published by Li, Liu, Palmer, Fleishman, Gillespie, Nosal, Shiu, Klinck, Cholewiak, Helble, and Roch [(2020). Proceedings of the International Joint Conference on Neural Networks, July 19–24, Glasgow, Scotland, p. 10] is incorporated into silbido, an established software package for extraction of cetacean tonal calls. The precision and recall of the new system were over 96% and nearly 80%, respectively, when applied to a whistle extraction task on a challenging two-species subset of a conference-benchmark data set. A second data set was examined to assess whether the algorithm generalized to data that were collected across different recording devices and locations. These data included 487 h of weakly labeled, towed array data collected in the Pacific Ocean on two National Oceanographic and Atmospheric Administration (NOAA) cruises. Labels for these data consisted of regions of toothed whale presence for at least 15 species that were based on visual and acoustic observations and not limited to whistles. Although the lack of per whistle-level annotations prevented measurement of precision and recall, there was strong concurrence of automatic detections and the NOAA annotations, suggesting that the algorithm generalizes well to new data.
AB - This work presents an open-source matlab software package for exploiting recent advances in extracting tonal signals from large acoustic data sets. A whistle extraction algorithm published by Li, Liu, Palmer, Fleishman, Gillespie, Nosal, Shiu, Klinck, Cholewiak, Helble, and Roch [(2020). Proceedings of the International Joint Conference on Neural Networks, July 19–24, Glasgow, Scotland, p. 10] is incorporated into silbido, an established software package for extraction of cetacean tonal calls. The precision and recall of the new system were over 96% and nearly 80%, respectively, when applied to a whistle extraction task on a challenging two-species subset of a conference-benchmark data set. A second data set was examined to assess whether the algorithm generalized to data that were collected across different recording devices and locations. These data included 487 h of weakly labeled, towed array data collected in the Pacific Ocean on two National Oceanographic and Atmospheric Administration (NOAA) cruises. Labels for these data consisted of regions of toothed whale presence for at least 15 species that were based on visual and acoustic observations and not limited to whistles. Although the lack of per whistle-level annotations prevented measurement of precision and recall, there was strong concurrence of automatic detections and the NOAA annotations, suggesting that the algorithm generalizes well to new data.
KW - Acoustics and ultrasonics
U2 - 10.1121/10.0016631
DO - 10.1121/10.0016631
M3 - Article
SN - 0001-4966
VL - 152
SP - 3800
EP - 3808
JO - Journal of the Acoustical Society of America
JF - Journal of the Acoustical Society of America
IS - 6
ER -