Projects per year
Abstract
The 31P chemical shift anisotropy (CSA) offers a potential source of new information to help determine the structures of aluminophosphate framework materials (AlPOs). We investigate how to measure the CSAs, which are small (span of ~20-30 ppm) for AlPOs, demonstrating the need for CSA-amplification experiments (often in conjunction with 27Al and/or 1H decoupling) at high magnetic field (20.0 T) to obtain accurate values. We show that the most shielded component of the chemical shift tensor, δ33, is related to the length of the shortest P-O bond, whereas the more deshielded components, δ11 and δ22 can be related more readily to the mean P-O bond lengths and P-O-Al angles. Using the case of Mg-doped STA-2 as an example, the CSA is shown to be much larger for P(OAl)4–n(OMg)n environments, primarily owing to a much shorter P-O(Mg) bond affecting δ33, however, since the mean P-O bond lengths and P-O-T (T = Al, Mg) bond angles do not change significantly between P(OAl)4 and P(OAl)4–n(OMg)n sites, the isotropic chemical shifts for these species are similar, leading to overlapped spectral lines. When the CSA information is included, spectral assignment becomes unambiguous, therefore, while the specialist conditions required might preclude the routine measurement of 31P CSAs in AlPOs, in some cases (particularly doped materials), the experiments can still provide valuable additional information for spectral assignment.
Original language | English |
---|---|
Pages (from-to) | 176-190 |
Journal | Magnetic Resonance in Chemistry |
Volume | 57 |
Issue number | 5 |
Early online date | 3 Sept 2018 |
DOIs | |
Publication status | Published - May 2019 |
Keywords
- Solid-state NMR spectroscopy
- 31P
- Chemical shift anisotropy
- CSA
- Aluminophosphates
- AlPOs
- DFT calculations
Fingerprint
Dive into the research topics of 'Is the 31P chemical shift anisotropy of aluminophosphates a useful parameter for NMR crystallography?'. Together they form a unique fingerprint.Projects
- 3 Finished
-
RS Wolfson Merit Award: Exploiting NMR spectroscopy: Local structure and disorder in solids
Ashbrook, S. E. (PI)
1/09/15 → 31/08/20
Project: Standard
-
NMR Crystallography: Collaborative Computational Project in NMR Crystallography - Collaborative Agreement
Ashbrook, S. E. (PI)
1/04/15 → 31/03/20
Project: Standard
Datasets
-
Is the 31P Chemical Shift Anisotropy of Aluminophosphates a Useful Parameter for NMR Crystallography? (dataset)
Dawson, D. M. (Creator), Moran, R. (Creator), Sneddon, S. (Creator) & Ashbrook, S. E. M. (Creator), University of St Andrews, 9 Nov 2018
DOI: 10.17630/ba570d0a-59a1-43d6-8d1a-c2ff2ef1f2f9
Dataset
File